[问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题:

设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线性变换, 且存在非零向量 \(\alpha\in V\) 使得 \[V=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots).\]

设 \(f(x)\) 是 \(\varphi\) 的特征多项式, 并且 \(f(x)\) 在数域 \(K\) 上至少有两个互异的首一不可约因式, 证明: 存在非零向量 \(\beta,\gamma\in V\) 使得 \[ V=L(\beta,\varphi(\beta),\varphi^2(\beta),\cdots)\oplus L(\gamma,\varphi(\gamma),\varphi^2(\gamma),\cdots).\]

[问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)的更多相关文章

  1. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  2. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  3. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  4. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  5. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  6. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  9. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

随机推荐

  1. JSONObject简介

    JSONObject简介 本节摘要:之前对JSON做了一次简单的介绍,并把JSON和XML做了一个简单的比较:那么,我就在想,如果是一个json格式的字符串传到后台,需要怎么对其处理?如果前台页面需要 ...

  2. 百度Site App的uaredirect.js实现手机访问,自动跳转网站手机版

    以下为代码,可放置在网站foot底部文件,或者haead顶部文件,建议将代码放在网站顶部,这样可以实现手机访问立即跳转! <script src="http://siteapp.bai ...

  3. ffmpeg命令行

    ubuntu下简单安装ffmpeg sudo add-apt-repository ppa:kirillshkrogalev/ffmpeg-nextsudo apt-get update sudo a ...

  4. IOS第12天(1,UIViewController控制器的创建的 三种方式,和第一个view创建)

    *************HMAppDelegate.m中 @implementation HMAppDelegate - (BOOL)application:(UIApplication *)app ...

  5. Run P4 without P4factory - A Simple Example In Tutorials. -2 附 simple_router源码

    /* Copyright 2013-present Barefoot Networks, Inc. Licensed under the Apache License, Version 2.0 (th ...

  6. JMeter之JDBC接口测试

    使用jmeter连接数据库后,即可在jmeter中构造对数据库进行增删改查的请求以对数据库进行测试,以下以mysql数据库为例,演示jmeter连接mysql并进程查询操作的步骤. 1.确保mysql ...

  7. phpcms流程

    phpcms流程1: 安装 将下载好的文件放到www目录下 地址栏中输入 http://localhost/phpcms/install_package/install 打开安装页面 进行安装即可. ...

  8. 论MySQL的监控和调优

    懂PHP的人一般都懂MySQL这一点不假,大多数书籍里也是这样,书中前面讲PHP后面到数据库这块就会讲到MySQL的一些知识,前几年MySQL一直是PHP书籍的一部分,后来开始从国外翻译了一些专门讲述 ...

  9. 小试牛刀3之JavaScript基础题

    JavaScript基础题 1.让用户输入两个数字,然后输出相加的结果. *prompt() 方法用于显示可提示用户进行输入的对话框. 语法: prompt(text,defaultText) 说明: ...

  10. JS-011-颜色进制转换(RGB转16进制;16进制转RGB)

    在网页开发的时候,经常需要进行颜色设置,因而经常需要遇到进行颜色进制转换的问题,例如:RGB转16进制:16进制转RGB),前几天在测试的时候,发现网站的颜色进制转换某类16进制颜色(例如:#0000 ...