题目链接:BZOJ - 1257

题目分析

首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     (1 <= i <= n)

前面的 n * k 很容易算,那么后面的 sigma(k / i) * i,怎么办呢?

我们可以分情况讨论,就有一个 O(sqrtk) 的做法。

1)当 i < sqrtk 时,直接枚举算这一部分。

2)当 i >= sqrtk 时, k / i <= sqrtk 。所以我们就可以枚举 k / i ,即枚举 [1, sqrtk] 的每一个数字。

   那么,对于我们枚举的每一个数字 x ,以它为 k / i 的 i 一定是连续的一段,它们的和可以用等差数列求和公式算出。

于是就很明确了。

代码

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream> using namespace std; int n, k, SQRTK, L, R; typedef long long LL; LL Ans; int main()
{
scanf("%d%d", &n, &k);
Ans = 0ll;
if (n > k) Ans += (LL)(n - k) * k;
n = n > k ? k : n;
SQRTK = sqrt(k * 1.0);
for (int i = 1; i <= SQRTK; i++) {
if (i > n) break;
Ans += (LL)k % i;
}
for (int i = 1; i <= SQRTK; i++) {
L = (k / (i + 1)) + 1; L = L <= SQRTK ? SQRTK + 1: L;
R = k / i; R = R > n ? n : R;
if (R < L) continue;
Ans += (LL)(R - L + 1) * ((k % L) + (k % R)) >> 1;
}
printf("%lld\n", Ans);
return 0;
}

  

[BZOJ 1257] [CQOI2007] 余数之和sum 【数学】的更多相关文章

  1. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  2. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  3. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  4. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  5. BZOJ 1257 [CQOI2007]余数之和sum(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1257 [题目大意] 给出正整数n和k,计算j(n,k)=k mod 1 + k mod ...

  6. BZOJ 1257 [CQOI2007]余数之和sum ——Dirichlet积

    [题目分析] 卷积很好玩啊. [代码] #include <cstdio> #include <cstring> #include <cmath> #include ...

  7. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

  8. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  9. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

随机推荐

  1. cocos2d&amp;cocos2dx学习资源

    汇总一下自己学习Cocos2d和cocos2dx认为比較好的一些资源: 书籍: <iPhone&iPad cocos2d游戏开发实战> Steffen Itterheim < ...

  2. 移植opencv库到zedboard(制作运行库镜像) 分类: OpenCV ZedBoard ubuntu shell Eye_Detection 2014-11-08 18:48 172人阅读 评论(0) 收藏

    主要参考rainysky的博客 http://ledage.eefocus.com/sj229335457/blog/13-06/295352_ad954.html opencv的话只需要将lib这个 ...

  3. hadoop编程技巧(4)---总体情况key按类别搜索TotalOrderPartitioner

    Hadoop代码测试版:Hadoop2.4 原理:携带MR该程序随机抽样提取前的输入数据,样本分类,然后,MR该过程的中间Partition此值用于当样品排序分组数据.这使得可以实现全球排名的目的. ...

  4. android 10 事件

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layo ...

  5. Qt Creator 你必须要掌握的快捷操作

    多使用快捷键能显著提高工作效率,尽可能减少键盘,鼠标之间切换所浪费的时间.我这里列出个人认为非常重要必须掌握的 Qt Creator 快捷键.看你知道几个? . 1 .Ctrl(按住)+ Tab快速切 ...

  6. spring mvc DispatcherServlet详解之拾忆工具类utils

    DispatcherServlet的静态初始化 /** * Name of the class path resource (relative to the DispatcherServlet cla ...

  7. webfont自定义字体的实现方案

    对于做Web前端的人来说,现在不知道webfont为何物似乎显得有点low了.webfont固然可爱,但似乎仍只可远观,不可亵玩.原因就在于中文字体库体积庞大,远比26个字母来的复杂.于是有同学就说了 ...

  8. 在DataTable中更新、删除数据

    /*在DataTable中选择记录*/            /* 向DataTable中插入记录如上,更新和删除如下:             * ----但是在更新和删除前,首先要找出要更新和删除 ...

  9. linux 脚本编写基础(一)

    1. Linux 脚本编写基础 1.1 语法基本介绍 1.1.1 开头 程序必须以下面的行开始(必须方在文件的第一行): #!/bin/sh 符号#!用来告诉系统它后面的参数是用来执行该文件的程序.在 ...

  10. 分享最近和同事处理的 解析XML的相关问题

    CREATE OR REPLACE PROCEDURE BATCHINSERTSK_DEVICE_RECORD1(      xmlstr  IN clob,          v_commits o ...