题目描述

根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:

输入

接下来T行,每行一个正整数p,代表你需要取模的值

输出

T行,每行一个正整数,为答案对p取模后的值

样例输入

3
2
3
6

样例输出

0
1
4


题解

扩展欧拉定理

内容:

证明参考 https://zhuanlan.zhihu.com/p/24902174

这个定理不要求a和p互质,可以直接使用。

回到题目中,设a=2,n=2^2^...,由于有无穷个2,,所以有a^n mod p = a^(a^n mod phi(p) + phi(p)) mod p。

可以发现a^n mod p和a^n mod phi(p)是一样的,所以我们可以递归求解。

边界条件:当a^n mod p为定值时结束。我们可以知道当p=1时这个式子必然等于0,可以结束。

而且这样的方法时间复杂度是O(logp)的,参考 http://blog.csdn.net/popoqqq/article/details/43951401

这样加上快速幂就能求解了。

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll pow(ll y , ll p)
{
ll x = 2 , ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
ll phi(ll x)
{
ll i , ans = x;
for(i = 2 ; i * i <= x ; i ++ )
{
if(x % i == 0)
{
ans = ans / i * (i - 1);
while(x % i == 0) x /= i;
}
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
ll cal(ll p)
{
if(p == 1) return 0;
ll t = phi(p);
return pow(cal(t) + t , p);
}
int main()
{
int T;
ll p;
scanf("%d" , &T);
while(T -- ) scanf("%lld" , &p) , printf("%lld\n" , cal(p));
return 0;
}

【bzoj3884】上帝与集合的正确用法 扩展欧拉定理的更多相关文章

  1. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...

  4. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  5. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. BZOJ3884 上帝与集合的正确用法 【欧拉定理】

    题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...

  8. 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

    [BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...

  9. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

随机推荐

  1. Android(java)学习笔记153:采用post请求提交数据到服务器(qq登录案例)

    1.POST请求:  数据是以流的方式写给服务器 优点:(1)比较安全 (2)长度不限制 缺点:编写代码比较麻烦   2.我们首先在电脑模拟下POST请求访问服务器的场景: 我们修改之前编写的logi ...

  2. Android(java)学习笔记95:Android运行时异常"Binary XML file line # : Error inflating class"

    在原生Android下编译APK,编译没有问题,但是在运行的时候经常出现如标题所描述的异常:"Binary XML file line # : Error inflating class&q ...

  3. tk.mybatis Example 多个or条件拼接

    //需要的查询条件为 a and (b or c or d) 可以转换为 (a and b) or (a and c) or (a and d) private Example madeExample ...

  4. 把网上图片下载到本地的java工具类

    package com.swift; import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; ...

  5. java中如何设置HTTP协议的头信息(header)

    首先,我们先看一下http的头信息到底是什么:HTTP(HyperTextTransferProtocol) 即超文本传输协议,目前网页传输的的通用协议.HTTP协议采用了请求/响应模型,浏览器或其他 ...

  6. inotifywait实时监控文件目录

    一.inotify简介 inotify 是一种强大的.细粒度的.异步文件系统监控机制,它满足各种各样的文件监控需要,可以监控文件系统的访问属性.读写属性.权限属性.创建删除.移动等操作,也可以监控文件 ...

  7. Django2.1集成xadmin管理后台所遇到的错误集锦,解决填坑

    django默认是有一个admin的后台管理模块,但是丑,功能也不齐全,但是大神给我们已经集成好了xadmin后台,我们拿来用即可,但是呢,django已经升级到2.1版本了,xadmin貌似跟不上节 ...

  8. 动态规划:HDU1059-Dividing(多重背包问题的二进制优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. 矩阵乘法在hadoop的实现

    先随机生成一个矩阵,矩阵的行数与列数由用户输入: #!/bin/bashfor i in `seq 1 $1`do for j in `seq 1 $2` do s=$((RANDOM%100)) e ...

  10. Django 四——ModelForm用法

    内容概要: 1.新增数据库表中数据 2.更新数据库表中数据 Django的ModelForm Django中内置了Form和Model两个类,有时候页面的表单form类与Model类是一一对应,因此分 ...