【bzoj3884】上帝与集合的正确用法 扩展欧拉定理
题目描述

输入
输出
样例输入
3
2
3
6
样例输出
0
1
4
题解
扩展欧拉定理
内容:
证明参考 https://zhuanlan.zhihu.com/p/24902174
这个定理不要求a和p互质,可以直接使用。
回到题目中,设a=2,n=2^2^...,由于有无穷个2,,所以有a^n mod p = a^(a^n mod phi(p) + phi(p)) mod p。
可以发现a^n mod p和a^n mod phi(p)是一样的,所以我们可以递归求解。
边界条件:当a^n mod p为定值时结束。我们可以知道当p=1时这个式子必然等于0,可以结束。
而且这样的方法时间复杂度是O(logp)的,参考 http://blog.csdn.net/popoqqq/article/details/43951401
这样加上快速幂就能求解了。
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll pow(ll y , ll p)
{
ll x = 2 , ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
ll phi(ll x)
{
ll i , ans = x;
for(i = 2 ; i * i <= x ; i ++ )
{
if(x % i == 0)
{
ans = ans / i * (i - 1);
while(x % i == 0) x /= i;
}
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
ll cal(ll p)
{
if(p == 1) return 0;
ll t = phi(p);
return pow(cal(t) + t , p);
}
int main()
{
int T;
ll p;
scanf("%d" , &T);
while(T -- ) scanf("%lld" , &p) , printf("%lld\n" , cal(p));
return 0;
}
【bzoj3884】上帝与集合的正确用法 扩展欧拉定理的更多相关文章
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
随机推荐
- Android(java)学习笔记153:采用post请求提交数据到服务器(qq登录案例)
1.POST请求: 数据是以流的方式写给服务器 优点:(1)比较安全 (2)长度不限制 缺点:编写代码比较麻烦 2.我们首先在电脑模拟下POST请求访问服务器的场景: 我们修改之前编写的logi ...
- Android(java)学习笔记95:Android运行时异常"Binary XML file line # : Error inflating class"
在原生Android下编译APK,编译没有问题,但是在运行的时候经常出现如标题所描述的异常:"Binary XML file line # : Error inflating class&q ...
- tk.mybatis Example 多个or条件拼接
//需要的查询条件为 a and (b or c or d) 可以转换为 (a and b) or (a and c) or (a and d) private Example madeExample ...
- 把网上图片下载到本地的java工具类
package com.swift; import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; ...
- java中如何设置HTTP协议的头信息(header)
首先,我们先看一下http的头信息到底是什么:HTTP(HyperTextTransferProtocol) 即超文本传输协议,目前网页传输的的通用协议.HTTP协议采用了请求/响应模型,浏览器或其他 ...
- inotifywait实时监控文件目录
一.inotify简介 inotify 是一种强大的.细粒度的.异步文件系统监控机制,它满足各种各样的文件监控需要,可以监控文件系统的访问属性.读写属性.权限属性.创建删除.移动等操作,也可以监控文件 ...
- Django2.1集成xadmin管理后台所遇到的错误集锦,解决填坑
django默认是有一个admin的后台管理模块,但是丑,功能也不齐全,但是大神给我们已经集成好了xadmin后台,我们拿来用即可,但是呢,django已经升级到2.1版本了,xadmin貌似跟不上节 ...
- 动态规划:HDU1059-Dividing(多重背包问题的二进制优化)
Dividing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- 矩阵乘法在hadoop的实现
先随机生成一个矩阵,矩阵的行数与列数由用户输入: #!/bin/bashfor i in `seq 1 $1`do for j in `seq 1 $2` do s=$((RANDOM%100)) e ...
- Django 四——ModelForm用法
内容概要: 1.新增数据库表中数据 2.更新数据库表中数据 Django的ModelForm Django中内置了Form和Model两个类,有时候页面的表单form类与Model类是一一对应,因此分 ...