题意:

你有一个点集,有三种操作:

  • 往集合里插入一个点\((x, y)\)
  • 从集合中删除第\(i\)次操作插入的点
  • 对于给出的\(q\),询问点集中\(x \cdot q + y\)的最大值

分析:

先不考虑插入删除操作,对于一个给定的点集,如何寻找\(x \cdot q + y\)最大值

这是一个线性规划的问题,只是可行域变成了离散的点。

设\(x \cdot q + y = z\),其中\(z\)是优化目标。

\(y = -q \cdot x + z\),使得经过点\((x, y)\)斜率为\(-q\)的直线的截距最大。

那么作为最优解的点一定在点集的凸包上,所以可以用单调栈求出凸包,然后三分求最大值。

因为每次操作都可能导致点集发生变化,不可能每次都求一遍凸包。

每个节点对应一个生存期\([L, R]\),即在第\(L\)次操作到第\(R\)次操作中点集中有该点。

然后把它插入到一个线段树的区间中,这样线段树的每个点都对应一段操作区间的一个点集。

用这个点集的凸包更新所有这个区间的询问。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; typedef long long LL;
const int maxn = 300000 + 10;
const LL INF = 1LL << 61; struct Point
{
LL x, y; Point(LL x = 0, LL y = 0): x(x), y(y) {} void read() { scanf("%lld%lld", &x, &y); } bool operator < (const Point& t) const {
return x < t.x || (x == t.x && y < t.y);
} Point operator + (const Point& t) const {
return Point(x + t.x, y + t.y);
} Point operator - (const Point& t) const {
return Point(x - t.x, y - t.y);
}
}; LL Cross(const Point& A, const Point& B) {
return A.x * B.y - A.y * B.x;
} LL Dot(const Point& A, const Point& B) {
return A.x * B.x + A.y * B.y;
} int type[maxn], top;
Point p[maxn], S[maxn];
vector<Point> v[maxn * 4];
bool del[maxn], empty[maxn];
LL ans[maxn]; void insert(int o, int L, int R, int qL, int qR, int v) {
if(qL <= L && R <= qR) {
::v[o].push_back(p[v]);
return;
}
int M = (L + R) / 2;
if(qL <= M) insert(o<<1, L, M, qL, qR, v);
if(qR > M) insert(o<<1|1, M+1, R, qL, qR, v);
} void query(int x) {
int L = 1, R = top;
while(R - L >= 3) {
int mid1 = (L * 2 + R) / 3;
int mid2 = (L + R * 2) / 3;
if(Dot(p[x], S[mid1]) < Dot(p[x], S[mid2])) L = mid1;
else R = mid2;
}
for(int i = L; i <= R; i++)
ans[x] = max(ans[x], Dot(p[x], S[i]));
} void solve(int o, int L, int R) {
if(L < R) {
int M = (L + R) / 2;
solve(o<<1, L, M);
solve(o<<1|1, M+1, R);
} sort(v[o].begin(), v[o].end());
top = 0;
for(int i = 0; i < v[o].size(); i++) {
while(top > 1 && Cross(S[top]-S[top-1], v[o][i]-S[top]) >= 0) top--;
S[++top] = v[o][i];
} for(int i = L; i <= R; i++) if(type[i] == 3 && !empty[i])
query(i);
} int main()
{
int n; scanf("%d", &n);
int cnt = 0;
for(int i = 1; i <= n; i++) {
scanf("%d", type + i);
if(type[i] == 1) {
p[i].read();
cnt++;
} else if(type[i] == 2) {
int x; scanf("%d", &x);
del[x] = true;
cnt--;
insert(1, 1, n, x, i, x);
} else {
scanf("%lld", &p[i].x);
p[i].y = 1LL;
if(!cnt) empty[i] = true;
}
} for(int i = 1; i <= n; i++)
if(type[i] == 1 && !del[i])
insert(1, 1, n, i, n, i); for(int i = 1; i <= n; i++) ans[i] = -INF;
solve(1, 1, n); for(int i = 1; i <= n; i++) if(type[i] == 3) {
if(empty[i]) printf("EMPTY SET\n");
else printf("%lld\n", ans[i]);
} return 0;
}

Codeforces 678F Lena and Queries的更多相关文章

  1. [Educational Round 13][Codeforces 678F. Lena and Queries]

    题目连接:678F - Lena and Queries 题目大意:要求对一个点集实现二维点对的插入,删除,以及询问\(q\):求\(max(x\cdot q+y)\) 题解:对每个点集内的点\(P( ...

  2. [CodeForces - 678F] Lena and Queries 线段树维护凸包

    大致题意: 给出三种操作 1.往平面点集中添加一个点 2.删除第i次添加的点 3.给出一个q,询问平面点集中的q*x+y的最大值 首先对于每个询问,可将z=q*x+y转化为y=z-q*x,即过点(x, ...

  3. codeforces 797 E. Array Queries【dp,暴力】

    题目链接:codeforces 797 E. Array Queries   题意:给你一个长度为n的数组a,和q个询问,每次询问为(p,k),相应的把p转换为p+a[p]+k,直到p > n为 ...

  4. CodeForces - 369E Valera and Queries(树状数组)

    CodeForces - 369E Valera and Queries 题目大意:给出n个线段(线段的左端点和右端点坐标)和m个查询,每个查询有cnt个点,要求给出有多少条线段包含至少其中一个点. ...

  5. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  6. 【CF 678F】Lena and Queries

    Time Limit: 2000 ms   Memory Limit: 512 MB Description 初始有一个空集合 n个操作 有三种操作,如下: 1 a b 表示向集合中插入二元组(a,b ...

  7. Codeforces 714C. Sonya and Queries Tire树

    C. Sonya and Queries time limit per test:1 second memory limit per test: 256 megabytes input:standar ...

  8. Educational Codeforces Round 2 B. Queries about less or equal elements 水题

    B. Queries about less or equal elements Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforc ...

  9. Educational Codeforces Round 1 B. Queries on a String 暴力

    B. Queries on a String Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/59 ...

随机推荐

  1. Java 记录日志

    Java9的日志级别: ALL 最低级别,系统会输出所有的日志信息,会生成大量的·.冗余的日志 TRACE 输出系统的各种跟踪信息,会生成大量的·.冗余的日志 DEBUG 输出调试信息,会生成较多的日 ...

  2. 使用kvm制作Eucalyptus镜像(Windows Server 2008r2为例)

    1.前言 Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems (Eucalyptus) ...

  3. centOS7虚拟机连接大网

    1.启动vm服务 如果遇到无法启动时,需要还原vm默认配置解决 2.更改vm设置为NAT模式 3.centOS开启DHCP

  4. 避免使用 JS 特性 with(obj){}

    1)简要说明         with 语句可以方便地用来引用某个特定对象中已有的属性,但是不能用来给对象添加属性.要给对象创建新的属性,必须明确地引用该对象. 2)语法格式  with(object ...

  5. python 数据库操作 SQLite、MySQL 摘录

    转自: http://www.cnblogs.com/windlaughing/p/3157531.html 不管使用什么后台数据库,代码所遵循的过程都是一样的:连接 -> 创建游标 -> ...

  6. Java中ArrayList的对象引用问题

    前言事件起因是由于同事使用ArrayList的带参构造方法进行ArrayList对象复制,修改新的ArrayList对象中的元素(对象)的成员变量时也会修改原ArrayList中的元素(对象)的成员变 ...

  7. Jmeter模拟http请求

    一.获取用户信息(GET请求):http://hostname/getuser?userid=1 1.打开jmeter,创建一个线程组,再添加一个http请求Sampler 2.设置域名.路径.请求方 ...

  8. windows下安装python的包管理工具pip,scikit-learn

    打开https://pip.pypa.io/en/latest/installing.html#python-os-support 下载pip-get.py 进入python,执行pip-get.py ...

  9. 如何使用工具进行C/C++的内存泄漏检测

    系统编程中一个重要的方面就是有效地处理与内存相关的问题.你的工作越接近系统,你就需要面对越多的内存问题.有时这些问题非常琐碎,而更多时候它会演变成一个调试内存问题的恶梦.所以,在实践中会用到很多工具来 ...

  10. SAP事件 Event Flow(转载)

    1 报表过程事件 报表过程事件是在报表运行过程中由系统自动控制,按照一定次序被触发的事件,其目的是从数据库中选择数据并整理,准备进行列表输出.这些事件从报表程序启动开始就被系统顺序触发,现分述如下: ...