UVA11178 Morley's Theorem
题意
分析
就按题意模拟即可,注意到对称性,只需要知道如何求其中一个。
注意A、B、C按逆时针排列,利用这个性质可以避免旋转时分类讨论。
时间复杂度\(O(T)\)
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll;
co double eps=1e-10;
int dcmp(double x)
{
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
}
struct Point
{
double x,y;
Point(double x=0,double y=0)
:x(x),y(y){}
bool operator<(co Point&rhs)co
{
return x<rhs.x||(x==rhs.x&&y<rhs.y);
}
bool operator==(co Point&rhs)co
{
return dcmp(x-rhs.x)==0&&dcmp(y-rhs.y)==0;
}
};
typedef Point Vector;
Vector operator+(Vector A,Vector B)
{
return Vector(A.x+B.x,A.y+B.y);
}
Vector operator-(Point A,Point B)
{
return Vector(A.x-B.x,A.y-B.y);
}
Vector operator*(Vector A,double p)
{
return Vector(A.x*p,A.y*p);
}
Vector operator/(Vector A,double p)
{
return Vector(A.x/p,A.y/p);
}
double Dot(Vector A,Vector B)
{
return A.x*B.x+A.y*B.y;
}
double Length(Vector A)
{
return sqrt(Dot(A,A));
}
double Angle(Vector A,Vector B)
{
return acos(Dot(A,B)/Length(A)/Length(B));
}
double Cross(Vector A,Vector B)
{
return A.x*B.y-A.y*B.x;
}
double Area2(Point A,Point B,Point C)
{
return Cross(B-A,C-A);
}
Vector Rotate(Vector A,double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A)
{
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
}
double DistanceToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B)
return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<0)
return Length(v2);
if(dcmp(Dot(v1,v3))>0)
return Length(v3);
return DistanceToLine(P,A,B);
}
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
}
double PolygonArea(Point*p,int n)
{
double area=0;
for(int i=1;i<n-1;++i)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
}
Point getD(Point A,Point B,Point C)
{
Vector v1=C-B;
double a1=Angle(A-B,v1);
v1=Rotate(v1,a1/3);
Vector v2=B-C;
double a2=Angle(A-C,v2);
v2=Rotate(v2,-a2/3);
return GetLineIntersection(B,v1,C,v2);
}
//Point read()
//{
// Point p;
// scanf("%lf %lf",&p.x,&p.y);
// return p;
//}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int T;
scanf("%d",&T);
Point A,B,C,D,E,F;
while(T--)
{
// read(A);read(B);read(C);
scanf("%lf %lf %lf %lf %lf %lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y);
// cerr<<"A="<<A.x<<" "<<A.y<<endl;
// cerr<<"B="<<B.x<<" "<<B.y<<endl;
// cerr<<"C="<<C.x<<" "<<C.y<<endl;
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%lf %lf %lf %lf %lf %lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}
Hint
注意向量的读入。开始想重载一个read结果是错的,迫不得已改成直接scanf。
以后可以在结构体里面实现一个read。
UVA11178 Morley's Theorem的更多相关文章
- uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)
Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the ...
- UVA11178 Morley's Theorem(基础模板)
题目链接 题意:给出A,B, C点坐标求D,E,F坐标,其中每个角都被均等分成三份 求出 ABC的角a, 由 BC 逆时针旋转 a/3 得到BD,然后 求出 ACB 的角a2, 然后 由 BC顺时 ...
- [Uva11178]Morley's Theorem(计算几何)
Description 题目链接 Solution 计算几何入门题 只要求出三角形DEF的一个点就能推出其他两个点 把一条边往内旋转a/3度得到一条射线,再做一条交点就是了 Code #include ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVa 11178 (简单练习) Morley's Theorem
题意: Morley定理:任意三角形中,每个角的三等分线,相交出来的三个点构成一个正三角形. 不过这和题目关系不大,题目所求是正三角形的三个点的坐标,保留6位小数. 分析: 由于对称性,求出D点,EF ...
- Morley's Theorem (计算几何基础+向量点积、叉积、旋转、夹角等+两直线的交点)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
随机推荐
- Book Review of “The practice of programming” (Ⅳ)
The practice of programming Chapter 4 Interfaces A good programmer should always be good at designin ...
- Android Studio 入门级教程
引用原文:http://www.cnblogs.com/abao0/p/6934023.html 写博客是为了记住自己容易忘记的东西,另外也是对自己工作的总结,文章可以转载,无需版权.希望尽自己的努力 ...
- COS-5资源分配与调度
操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口.操作系统的功能包括管理计算机系统的硬件.软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限 ...
- 内核hlist的使用
struct hlist_head { struct hlist_node *first; }; struct hlist_node { struct hlist_node *next, **ppre ...
- Linux 设备驱动之 UIO 机制
一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...
- libnetwork 源码浅析
[编者的话]从docker 1.6开始关注docker网络这块,从原来的铁板一块,到后来的libnetwork拆分,到现在的remote driver,docker 一直在改进.功能缺失,实用性不足, ...
- 更新CentOS 6.7源为阿里源
1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS-Base ...
- crm开发(基于ssh)(五)
1 信息查询 (1)多条件组合查询 -拼接hql语句 -使用离线对象 2 添加数据字典表 (1)改造添加客户功能 3 统计分析 (1)调用普通sql实现 (2)结果处理操作 4 使用ssh注解整合 ( ...
- pyCharm上解决安装不上pandas库问题
最近在PyCharm上安装pandas库的时候,总是安装不上,提示好像是pip除了错误.我使用的是python .4版本.最后判断应该是自己pip版本应该太旧了,最后再cmd更新了pip之后就行了.如 ...
- PHP使用前的了解
PHP简介 PHP 是什么? PHP(全称:PHP:Hypertext Preprocessor,即"PHP:超文本预处理器")是一种通用开源脚本语言. PHP 脚本在服务器上执行 ...