P2169 正则表达式
题目背景
小Z童鞋一日意外的看到小X写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符“0”,“1”,“.”和“*”构成,但是他能够匹配出所有在OJ上都AC的程序的核心代码!小Z大为颇感好奇,于是他决定入侵小X的电脑上去获得这个正则表达式的高级程序。
题目描述
在Internet网络中的每台电脑并不是直接一对一连通的,而是某些电脑之间存在单向的网络连接,也就是说存在A到B的连接不一定存在B到A的连接,并且有些连接传输速度很快,有些则很慢,所以不同连接传输所花的时间是有大有小的。另外,如果存在A到B的连接的同时也存在B到A的连接的话,那么A和B实际上处于同一局域网内,可以通过本地传输,这样花费的传输时间为0。
现在小Z告诉你整个网络的构成情况,他希望知道从他的电脑(编号为1),到小X的电脑(编号为n)所需要的最短传输时间。
输入输出格式
输入格式:
第一行两个整数n, m, 表示有n台电脑,m个连接关系。
接下来m行,每行三个整数u,v,w;表示从电脑u到电脑v传输信息的时间为w。
输出格式:
输出文件仅一行为最短传输时间。
输入输出样例
3 2
1 2 1
2 3 1
2
5 5
1 2 1
2 3 6
3 4 1
4 2 1
3 5 2
3
说明
对于40%的数据,1<=n<=1000, 1<=m<=10000
对于70%的数据,1<=n<=5000, 1<=m<=100000
对于100%的数据,1<=n<=200000, 1<=m<=1000000
Solution:
本题好水,缩点+最短路板子题,瞎搞一下就好了。
代码:
/*Code by 520 -- 8.31*/
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/priority_queue.hpp>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
using namespace __gnu_pbds;
const int N=;
struct node{
int u,d;
bool operator<(const node &a)const{return d>a.d;}
};
typedef __gnu_pbds::priority_queue<node,less<node>,pairing_heap_tag> heap;
heap q;
heap::point_iterator id[N];
int n,m,tot,dfn[N],low[N];
int to[N],net[N],w[N],h[N],dis[N],cnt;
int To[N],Net[N],W[N],H[N];
int scc,stk[N],top,bl[N];
bool ins[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],w[cnt]=c,h[u]=cnt;} il void Add(int u,int v,int c){To[++cnt]=v,Net[cnt]=H[u],W[cnt]=c,H[u]=cnt;} il void dij(){
For(i,,scc) dis[i]=0x7fffffff;
dis[bl[]]=,q.push(node{bl[],});
while(!q.empty()){
node x=q.top();q.pop();
for(RE int i=H[x.u];i;i=Net[i])
if(dis[To[i]]>dis[x.u]+W[i]){
dis[To[i]]=dis[x.u]+W[i];
if(id[To[i]]==)id[To[i]]=q.push(node{To[i],dis[To[i]]});
else q.modify(id[To[i]],node{To[i],dis[To[i]]});
}
}
} void tarjan(int u){
dfn[u]=low[u]=++tot,stk[++top]=u,ins[u]=;
for(RE int i=h[u];i;i=net[i])
if(!dfn[to[i]]) tarjan(to[i]),low[u]=min(low[to[i]],low[u]);
else if(ins[to[i]]) low[u]=min(dfn[to[i]],low[u]);
if(dfn[u]==low[u]){
scc++;
while(stk[top+]!=u) bl[stk[top]]=scc,ins[stk[top--]]=;
}
} il void init(){
n=gi(),m=gi();
int u,v,c;
while(m--) u=gi(),v=gi(),c=gi(),add(u,v,c);
For(i,,n) if(!dfn[i]) tarjan(i);
For(u,,n) for(RE int i=h[u];i;i=net[i]) Add(bl[u],bl[to[i]],w[i]);
dij();
cout<<dis[bl[n]];
} int main(){
init();
return ;
}
P2169 正则表达式的更多相关文章
- 洛谷——P2169 正则表达式
P2169 正则表达式 题目背景 小Z童鞋一日意外的看到小X写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符“0”,“1”,“.”和“*”构成,但是他能够匹配出所有在OJ上都AC的程序的核心 ...
- 【luogu P2169 正则表达式】 题解
题目链接:https://www.luogu.org/problemnew/show/P2169 tarjan缩点 + SPFA 缩完点之后加边注意别写错. 也可以不用建两个图,可以在一张图上判断是否 ...
- 洛谷P2169 正则表达式
题目背景 小\(Z\)童鞋一日意外的看到小\(X\)写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符"\(0\)","\(1\)","\(. ...
- Tarjan总结(缩点+割点(边)+双联通+LCA+相关模板)
Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图 ...
- blog 题解目录
洛谷: 1.P2430 严酷的训练 2.CF784E Twisted Circuit 3.P1886 滑动窗口 4.P1090 合并果子 5.P1119 灾后重建 6.P1690 贪婪的Copy 7. ...
- 2019.2-2019.3 TO-DO LIST
DP P2723 丑数 Humble Numbers(完成时间:2019.3.1) P2725 邮票 Stamps(完成时间:2019.3.1) P1021 邮票面值设计(完成时间:2019.3.1) ...
- JS正则表达式常用总结
正则表达式的创建 JS正则表达式的创建有两种方式: new RegExp() 和 直接字面量. //使用RegExp对象创建 var regObj = new RegExp("(^\\s+) ...
- Python高手之路【五】python基础之正则表达式
下图列出了Python支持的正则表达式元字符和语法: 字符点:匹配任意一个字符 import re st = 'python' result = re.findall('p.t',st) print( ...
- C# 正则表达式大全
文章导读 正则表达式的本质是使用一系列特殊字符模式,来表示某一类字符串.正则表达式无疑是处理文本最有力的工具,而.NET提供的Regex类实现了验证正则表达式的方法.Regex 类表示不可变(只读)的 ...
随机推荐
- 【LG3242】 [HNOI2015]接水果
题面 洛谷 题解 20pts 对于\(n,P,Q\leq 3000\),暴力判断每条路径的包含关系然后排序\(kth\)即可,复杂度\(O(PQ\log P)\) 另30pts 原树为一条链. 发现对 ...
- 【LG5020】[NOIP2018]货币系统
[LG5020][NOIP2018]货币系统 题面 洛谷 题解 考场上第一眼还不会233 可以发现只要可以被其他的货币通过一些奇奇怪怪的方式表示出来的货币就\(ban\)掉即可 就是个完全背包 我是统 ...
- Elasticsearch6.2集群搭建
Elasticsearch6.2集群搭建 2018年04月02日 11:07:45 这个名字想了很久 阅读数:14154 版权声明:本博客为学习.笔记之用,以笔记形式记录学习的知识与感悟.学习过 ...
- hdu2065"红色病毒"问题(指数母函数+快速幂取模)
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- Openwrt之移动硬盘ext3/ext4格式化工具
在给openwrt挂载移动硬盘的时候,最好是ext3/ext4方式,但在windows下苦于无法找到合适的工具进行格式化. 踅摸了半天,终于找到了它:MiniTool Partion Wizard ...
- C/C++语言基础
1. 一个子类中含有其他类对象,则构造函数的顺序是? 先执行基类的(如果基类当中有虚基类,要先执行虚基类的,其他基类则按照声明派生类是的顺序依次执行),在执行成员对象的,最后执行自己的. 2.spri ...
- 【转】PHPCMS v9 自定义表单添加验证码验证
1. 在 \phpcms\templates\default\formguide\show.html 中添加验证码显示 <input type="text" id=&quo ...
- Red Hat Enterprise Linux / CentOS 7 yum安装zabbix4.0
添加Zabbix存储库安装存储库配置包. 该软件包包含yum(软件包管理器)配置文件. rpm -ivh https://repo.zabbix.com/zabbix/4.0/rhel/7/x86_6 ...
- Centos6升级至openssh-7.5p1
最近公司有几台服务器需要搬至甲方(政府单位),所以在安装服务时用的是16年的openssh7.3pl, 今天通知我们有漏洞,需要再一次升级,看到官方文档上版本已升级至7.5,所以干脆直接搞7.5 具体 ...
- Matlab中 .' 的作用。
Syntax B = A.' B = transpose(A) Description B = A.' returns the nonconjugate transpose of A, that ...