题目描述###

在n个人中,某些人的银行账号之间可以互相转账。这些人之间转账的手续费各不相同。给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A最少需要多少钱使得转账后B收到100元。

输入输出格式###

输入格式:####

第一行输入两个正整数n,m,分别表示总人数和可以互相转账的人的对数。

以下m行每行输入三个正整数x,y,z,表示标号为x的人和标号为y的人之间互相转账需要扣除z%的手续费 (z<100)。

最后一行输入两个正整数A,B。数据保证A与B之间可以直接或间接地转账。

输出格式:####

输出A使得B到账100元最少需要的总费用。精确到小数点后8位。

输入输出样例###

输入样例#1:####

3 3

1 2 1

2 3 2

1 3 3

1 3

输出样例#1:####

103.07153164

数据范围说明###

1<=n<=2000

解题思路###

这一题数据较大,所以用Dijkstra,\(O(n^2)\) 实现。由于从一个账户转钱到另外一个账户的手续费不同,所以我们视它们为边的权值。先求出去掉手续费后所遗留下的钱,并在寻找路径时尽量去找能留下更多钱的路径(注意在起始点时要给它赋值为1),并将权值相乘,最后拿100除以权值相乘得到的最大值,输出答案。

实现代码####

#include <iostream>
#include <cstdio>
using namespace std; const int M = 2002;
int n,m,a,b,k;
double map[M][M],minn;
double dis[M];
bool vis[M]; void dijkstra(int start)
{
for(int i=1; i<=n; i++)
dis[i]=map[start][i];
vis[start]=true;
dis[start]=1;//必须进行赋值1,因为若进行更改将使用乘法(0*every==0)
for(int i=1; i<n; i++)
{
minn=0;
for(int j=1; j<=n; j++)
if(!vis[j]&&dis[j]>minn) //寻找剩余金额最大的
minn=dis[j],k=j;
vis[k]=true;
if(k==b) break;//结束标志
for(int q=1; q<=n; q++)
if(!vis[q]&&dis[q]<dis[k]*map[k][q])
dis[q]=dis[k]*map[k][q];//进行松弛
}
} int main()
{
double z;
scanf("%d%d",&n,&m);
for(int i=1,x,y; i<=m; i++)
{
cin>>x>>y>>z;
map[x][y]=map[y][x]=(100-z)/100;//表示是原金额的百分之几
}
cin>>a>>b;
dijkstra(a);
printf("%.8lf\n",100/dis[b]);
return 0;
}

[C++一本通-图论算法] 例4-4 最小花费的更多相关文章

  1. 1344:【例4-4】最小花费 dijkstra

    1344:[例4-4]最小花费 Dijkstra (1)a [ i ] [ j ] 存转账率(..转后所得率..) (2)dis [ i ] 也就是 a [ 起点 ] [ i ] (3)f [ i ] ...

  2. 图论算法-最小费用最大流模板【EK;Dinic】

    图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...

  3. 图论算法-网络最大流【EK;Dinic】

    图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...

  4. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  5. [算法模版]Tarjan爷爷的几种图论算法

    [算法模版]Tarjan爷爷的几种图论算法 前言 Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会).这里会对这三种算法进行简单介绍. 定义 强连通(strongl ...

  6. NOIp 图论算法专题总结 (1):最短路、最小生成树、最近公共祖先

    系列索引: NOIp 图论算法专题总结 (1) NOIp 图论算法专题总结 (2) NOIp 图论算法专题总结 (3) 最短路 Floyd 基本思路:枚举所有点与点的中点,如果从中点走最短,更新两点间 ...

  7. NOIp 图论算法专题总结 (2)

    系列索引: NOIp 图论算法专题总结 (1) NOIp 图论算法专题总结 (2) NOIp 图论算法专题总结 (3) 树链剖分 https://oi-wiki.org/graph/heavy-lig ...

  8. NOIp 图论算法专题总结 (3):网络流 & 二分图 简明讲义

    系列索引: NOIp 图论算法专题总结 (1) NOIp 图论算法专题总结 (2) NOIp 图论算法专题总结 (3) 网络流 概念 1 容量网络(capacity network)是一个有向图,图的 ...

  9. 「一本通 1.3 例 5」weight]

    「一本通 1.3 例 5」weight 题面 给定原数列 \(a_1,a_2,a_n\) ,给定每个数的前缀和以及后缀和,并且打乱顺序. 给出一个集合 \(S\) 要求从集合 \(S\) 中找到合适的 ...

随机推荐

  1. 通过<meta>标签指定IE的文档模式实现CSS3兼容

    今天发现之前做好的一个页面在IE中打开显示的效果不正常,本地和服务器上显示的是两种不同的样式. 经过确认文档内容和CSS都是一样的. 通过IE F12(开发人员工具)发现不正常的样式 浏览器文档模式自 ...

  2. vue项目的mode:history模式

    最近做的Vue + Vue-Router + Webpack +minitUI项目碰到的问题,在此记录一下,Vue-router 中有hash模式和history模式,vue的路由默认是hash模式, ...

  3. pwnable.tw start&orw

    emm,之前一直想做tw的pwnable苦于没有小飞机(,今天做了一下发现都是比较硬核的pwn题目,对于我这种刚入门?的菜鸡来说可能难度刚好(orz 1.start 比较简单的一个栈溢出,给出一个li ...

  4. php输出语句 echo print printf print_r var_dump sprintf

    php的几种输出方式: echo 常用的输出语句,例如:echo 'helloworld!'; print() 输出语句,有返回值.例如:print('helloworld!'); 输出成功返回1,失 ...

  5. VUE 父组件与子组件交互

    1. 概述 1.1 说明 在项目过程中,会有很多重复功能在多个页面中处理,此时则需要把这些重复的功能进行单独拎出,编写公用组件(控件)进行引用.在VUE中,组件是可复用的VUE实例,此时组件中的dat ...

  6. 使用 DG Tweening

    在iphone上卡顿的话,使用application.frame更改刷新帧率

  7. HTML5画布小dome八卦图

      <!DOCTYPE html>   <html>   <head>   <meta charset="utf-8" />   & ...

  8. TopN案例

    准备三份数据 t1 2067 t2 2055 t3 2055 t4 1200 t5 2367 t6 255 t7 2555 t8 12100 t9 20647 t10 245 t11 205 t12 ...

  9. MapReduce词频统计

    自定义Mapper实现 import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; impor ...

  10. 终极版:Mybatis整合Spring配置

    第一部分:配置 Spring 框架 配置 SpringMVC 的步骤: 配置流程图: SpringMVC 配置 1. 导入包(那些包,基本包 5 个,1 个日志依赖包,2 个 webmvc 支持包) ...