A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).



-->

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX, 0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]
class Solution {

public:

    vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {

        vector< pair<int, int> > edges;

        //put all of edge into a vector

        //set left edge as negtive, right edge as positive

        //so, when we sort the edges, 

        //  1) for same left point, the height would be descending order

        //  2) for same right point, the height would be ascending order

        int left, right, height;

        for(int i=; i<buildings.size(); i++) {

            left   = buildings[i][];

            right  = buildings[i][];

            height = buildings[i][];

            edges.push_back(make_pair(left, -height));

            edges.push_back(make_pair(right, height));

        }

        sort(edges.begin(), edges.end());

        // 1) if we meet a left edge, then we add its height into a `set`.

        //    the `set` whould sort the height automatically.

        // 2) if we meet a right edge, then we remove its height from the `set`

        //

        // So, we could get the current highest height from the `set`, if the 

        // current height is different with preivous height, then we need add

        // it into the result.

        vector< pair<int, int> > result;

        multiset<int> m;

        m.insert();

        int pre = , cur = ;

        for (int i=; i<edges.size(); i++){

            pair<int,int> &e = edges[i];

            if (e.second < ) {

                m.insert(-e.second);

            }else{

                m.erase(m.find(e.second));

            }

            cur = *m.rbegin();

            if (cur != pre) {

                result.push_back(make_pair(e.first, cur));

                pre = cur;

            }

        }

        return result;

    }

};

/*

* Sweep line with max-heap

* ------------------------

* Notice that "key points" are either the left or right edges of the buildings.

*

* Therefore, we first obtain both the edges of all the N buildings, and store the 2N edges in a sorted array.

* Maintain a max-heap of building heights while scanning through the edge array:

* 1) If the current edge is a left edge, then add the height of its associated building to the max-heap;

* 2) If the edge is a right one, remove the associated height from the heap.

*

* Then we take the top value of the heap (yi) as the maximum height at the current edge position (xi).

* Now (xi, yi) is a potential key point.

*

* If yi is the same as the height of the last key point in the result list, it means that this key point

* is not a REAL key point, but rather a horizontal continuation of the last point, so it should be discarded;

*

* otherwise, we add (xi,yi) to the result list because it is a real key point.

*

* Repeat this process until all the edges are checked.

*

* It takes O(NlogN) time to sort the edge array. For each of the 2N edges,

* it takes O(1) time to query the maximum height but O(logN) time to add

* or remove elements. Overall, this solution takes O(NlogN) time.

*/

218. The Skyline Problem *HARD* -- 矩形重叠的更多相关文章

  1. [LeetCode] 218. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  2. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  4. 218. The Skyline Problem

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  5. LeetCode 218. The Skyline Problem 天际线问题(C++/Java)

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  6. 218. The Skyline Problem (LeetCode)

    天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...

  7. [LeetCode] Rectangle Overlap 矩形重叠

    A rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) are the coordinates of its bot ...

  8. [Swift]LeetCode836. 矩形重叠 | Rectangle Overlap

    A rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) are the coordinates of its bot ...

  9. LeetCode 836. 矩形重叠

    题目链接:https://leetcode-cn.com/problems/rectangle-overlap/ 矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左 ...

随机推荐

  1. Python的getattr(),setattr(),delattr(),hasattr()

    判断一个对象里面是否有name属性或者name方法,返回BOOL值,有name特性返回True, 否则返回False.需要注意的是name要用括号括起来   1 >>> class ...

  2. Messages消息处理

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  3. [SAP ABAP开发技术总结]结构复用(INCLUDE)

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  4. 发布《Linux工具快速教程》

    发布<Linux工具快速教程> 阶段性的完成了这本书开源书籍,发布出来给有需要的朋友,同时也欢迎更多的朋友加入进来,完善这本书: 本书Github地址:https://github.com ...

  5. mysql 2003 10038 连接不上的解决

    网上写的很复杂,其实解决办法是 你在右键管理员权限下运行 mysqld. 忘记这个了,害的又找了近1个小时的时间找问题.

  6. 笔记本_thinkpad_e40_FN

    1. 开机时按F10进入bios 然后在 bios 中选择 system configuration,看一下其中的 action keys mode .如果此选项后面为 enable 的话,是不需要按 ...

  7. [转载] 理解RESTful架构

    原文: http://www.ruanyifeng.com/blog/2011/09/restful.html 理解RESTful架构   作者: 阮一峰 日期: 2011年9月12日 越来越多的人开 ...

  8. Linux 中如何卸载已安装的软件

    Linux 中如何卸载已安装的软件. Linux软件的安装和卸载一直是困扰许多新用户的难题.在Windows中,我们可以使用软件自带的安装卸载程序或在控制面板中的“添加/删除程序”来实现.与其相类似, ...

  9. cublas相关的知识

    下面链接给出了一个例子,怎么用cublas进行矩阵的运算提速,也说明了cublas的大致的使用方法. http://www.cnblogs.com/scut-fm/p/3756242.html cub ...

  10. Android LayoutInflater 动态地添加删除View

    我想实现点击一个按钮(或其他的事件)添加或删除View,网上找到了LayoutInflater这个类. 下面是我自己一些经验: android官网上LayoutInflater的API:http:// ...