The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow, each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 
The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

Output

Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

Sample Input

2
3 3
###
#.#
###
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######

Sample Output

Maximum rope length is 0.
Maximum rope length is 8.

Hint

Huge input, scanf is recommended. 
If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int c,r,dx,dy;
int ans;
char a[1005][1005];
int b[1005][1005];
int mx[4] = {0,0,1,-1};
int my[4] = {1,-1,0,0};
void dfs(int x,int y,int t)
{
b[x][y]=1;
if(ans<t)
{
dx=x;
dy=y;
ans=t;
}
int xx,yy,i;
for(i=0;i<4;i++)
{
xx=x+mx[i];
yy=y+my[i];
if(xx>-1&&xx<r&&yy>-1&&yy<c&&!b[xx][yy]&&a[xx][yy]!='#')
dfs(xx,yy,t+1);
}
b[x][y]=1;
}
int main()
{
int t,i,j,sx,sy;
scanf("%d",&t);
while(t--)
{
int l=0;
ans=0;
memset(b,0,sizeof(b));
scanf("%d %d",&c,&r);
for(i=0;i<r;i++)
{
scanf("%s",a[i]);
for(j=0;j<c&&l==0;j++)
if(a[i][j]=='.')
{
l=1;
sx=i;
sy=j;
}
}
dfs(sx,sy,0);
memset(b,0,sizeof(b));
dfs(dx,dy,0);
printf("Maximum rope length is %d.\n",ans);
}
}

  

我的代码:

 1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<algorithm>
5
6 using namespace std;
7
8 int r, c;
9 char a[1005][1005];
10 int num[1005][1005];
11 int n_step, max_step, nx, ny;
12 int dx[4] = {0, 1, 0, -1};
13 int dy[4] = {1, 0, -1, 0};
14
15 int dfs(int x, int y, int step)
16 {
17 n_step = step;
18 a[x][y] = '#';
19 for(int i = -1; i <= 1; i++)
20 {
21
22 max_step = max(max_step, n_step);
23 nx = x + dx[i];
24 ny = y + dy[i];
25 if(nx > 0 && nx <= r && ny > 0 && ny <= c && a[nx][ny] == '.')
26 {
27 n_step++;
28 dfs(nx, ny, n_step);
29 }
30 }
31 return max_step;
32 }
33
34 int main()
35 {
36 int t;
37
38 scanf("%d", &t);
39 while(t--)
40 {
41 n_step = 0;
42 max_step = 0;
43 scanf("%d %d", &r, &c);
44 getchar();
45 memset(num, 0, sizeof(num));
46 for(int i = 0; i < max(r, c) + 1; i++)
47 {
48 a[0][i] = '#';
49 a[i][0] = '#';
50 a[r+1][i] = '#';
51 a[i][c+1] = '#';
52 }
53
54 //cout << r << c <<endl;
55 for(int i = 1; i <= r; i++)
56 {
57 for(int j = 1; j <= c; j++)
58 {
59 scanf("%c", &a[i][j]);
60 }
61 getchar();
62 }
63
64 for(int i = 1; i <= r; i++)
65 {
66 for(int j = 1; j <= c; j++)
67 {
68 if(a[i][j] == '.')
69 {
70 //cout << "++" << i << j << endl;
71 int ans = dfs(i, j, 0);
72 printf("%d\n", ans);
73 break;
74 }
75 }
76 }
77
78
79 }
80 return 0;
81 }

I - 树的直径 POJ - 1383的更多相关文章

  1. 树的直径 poj 2631

    树的直径:从随意一点出发,BFS找到最远的距离,然后在从该点出发BFS找到最远的距离 #include <iostream> #include <algorithm> #inc ...

  2. poj 1383 Labyrinth【迷宫bfs+树的直径】

    Labyrinth Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 4004   Accepted: 1504 Descrip ...

  3. POJ 1383 Labyrinth (bfs 树的直径)

    Labyrinth 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/E Description The northern part ...

  4. POJ 1383题解(树的直径)(BFS)

    题面 Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4997 Accepted: 1861 Descript ...

  5. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  6. poj 1985 Cow Marathon 树的直径

    题目链接:http://poj.org/problem?id=1985 After hearing about the epidemic of obesity in the USA, Farmer J ...

  7. POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)

    树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...

  8. POJ 2631 Roads in the North(树的直径)

    POJ 2631 Roads in the North(树的直径) http://poj.org/problem? id=2631 题意: 有一个树结构, 给你树的全部边(u,v,cost), 表示u ...

  9. POJ 1985 Cow Marathon(树的直径模板)

    http://poj.org/problem?id=1985 题意:给出树,求最远距离. 题意: 树的直径. 树的直径是指树的最长简单路. 求法: 两遍BFS :先任选一个起点BFS找到最长路的终点, ...

随机推荐

  1. 后端程序员之路 24、Redis hiredis

    Redishttps://redis.io/ Redis快速入门 - Redis教程http://www.yiibai.com/redis/redis_quick_guide.html wget ht ...

  2. Linux添加普通权限账号并授予root权限

    命令创建账号和密码 adduser Mysticbinary #添加一个Mysticbinary用户 passwd Mysticbinary # 输入密码 授予可以切换root的权限 修改/etc/s ...

  3. java中ArrayList 和 LinkedList 有什么区别

    转: java中ArrayList 和 LinkedList 有什么区别 ArrayList和LinkedList都实现了List接口,有以下的不同点:1.ArrayList是基于索引的数据接口,它的 ...

  4. Github Fork与远程主分支同步

    fork与主分支同步(5步) 1. git remote add upstream git@github.com:haichong98/gistandard.git   新建一个upstream的远程 ...

  5. div中如何让文本元素、img元素水平居中且垂直居中

    一.文本元素在div中的水平居中且垂直居中方法 html代码 <div id="box"> <p>文本元素</p> </div> c ...

  6. C# 应用 - 使用 WepApp 接受 Http 请求

    库类: Owin.dll Owin.IAppBuilder Microsoft.Owin.dll Microsoft.Owin.OwinContext Microsoft.Owin.Hosting.d ...

  7. Flink实时计算topN热榜

    TopN的常见应用场景,最热商品购买量,最高人气作者的阅读量等等. 1. 用到的知识点 Flink创建kafka数据源: 基于 EventTime 处理,如何指定 Watermark: Flink中的 ...

  8. pytest+jenkins+allure 生成测试报告发送邮件

    前言第一部分:Pycharm for Gitee1. pycharm安装gitee插件2. gitee关联本地Git快速设置- 如果你知道该怎么操作,直接使用下面的地址简易的命令行入门教程:3. Gi ...

  9. Vue 全家桶学习资源(转)

    companion: React 全家桶学习资源(持续更新) 下面整理了一些关于Vue以及Vue衍生的学习资源: 官网文档 官网API ECMAScript 6 入门 30分钟掌握ES6/ES2015 ...

  10. Java学习之浅析高内聚低耦合

    •前言 如果你涉及软件开发,可能会经常听到 "高内聚,低耦合" 这种概念型词语. 可是,何为 "高内聚,低耦合" 呢? •概念 "高内聚,低耦合&qu ...