The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow, each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 
The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

Output

Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

Sample Input

2
3 3
###
#.#
###
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######

Sample Output

Maximum rope length is 0.
Maximum rope length is 8.

Hint

Huge input, scanf is recommended. 
If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int c,r,dx,dy;
int ans;
char a[1005][1005];
int b[1005][1005];
int mx[4] = {0,0,1,-1};
int my[4] = {1,-1,0,0};
void dfs(int x,int y,int t)
{
b[x][y]=1;
if(ans<t)
{
dx=x;
dy=y;
ans=t;
}
int xx,yy,i;
for(i=0;i<4;i++)
{
xx=x+mx[i];
yy=y+my[i];
if(xx>-1&&xx<r&&yy>-1&&yy<c&&!b[xx][yy]&&a[xx][yy]!='#')
dfs(xx,yy,t+1);
}
b[x][y]=1;
}
int main()
{
int t,i,j,sx,sy;
scanf("%d",&t);
while(t--)
{
int l=0;
ans=0;
memset(b,0,sizeof(b));
scanf("%d %d",&c,&r);
for(i=0;i<r;i++)
{
scanf("%s",a[i]);
for(j=0;j<c&&l==0;j++)
if(a[i][j]=='.')
{
l=1;
sx=i;
sy=j;
}
}
dfs(sx,sy,0);
memset(b,0,sizeof(b));
dfs(dx,dy,0);
printf("Maximum rope length is %d.\n",ans);
}
}

  

我的代码:

 1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<algorithm>
5
6 using namespace std;
7
8 int r, c;
9 char a[1005][1005];
10 int num[1005][1005];
11 int n_step, max_step, nx, ny;
12 int dx[4] = {0, 1, 0, -1};
13 int dy[4] = {1, 0, -1, 0};
14
15 int dfs(int x, int y, int step)
16 {
17 n_step = step;
18 a[x][y] = '#';
19 for(int i = -1; i <= 1; i++)
20 {
21
22 max_step = max(max_step, n_step);
23 nx = x + dx[i];
24 ny = y + dy[i];
25 if(nx > 0 && nx <= r && ny > 0 && ny <= c && a[nx][ny] == '.')
26 {
27 n_step++;
28 dfs(nx, ny, n_step);
29 }
30 }
31 return max_step;
32 }
33
34 int main()
35 {
36 int t;
37
38 scanf("%d", &t);
39 while(t--)
40 {
41 n_step = 0;
42 max_step = 0;
43 scanf("%d %d", &r, &c);
44 getchar();
45 memset(num, 0, sizeof(num));
46 for(int i = 0; i < max(r, c) + 1; i++)
47 {
48 a[0][i] = '#';
49 a[i][0] = '#';
50 a[r+1][i] = '#';
51 a[i][c+1] = '#';
52 }
53
54 //cout << r << c <<endl;
55 for(int i = 1; i <= r; i++)
56 {
57 for(int j = 1; j <= c; j++)
58 {
59 scanf("%c", &a[i][j]);
60 }
61 getchar();
62 }
63
64 for(int i = 1; i <= r; i++)
65 {
66 for(int j = 1; j <= c; j++)
67 {
68 if(a[i][j] == '.')
69 {
70 //cout << "++" << i << j << endl;
71 int ans = dfs(i, j, 0);
72 printf("%d\n", ans);
73 break;
74 }
75 }
76 }
77
78
79 }
80 return 0;
81 }

I - 树的直径 POJ - 1383的更多相关文章

  1. 树的直径 poj 2631

    树的直径:从随意一点出发,BFS找到最远的距离,然后在从该点出发BFS找到最远的距离 #include <iostream> #include <algorithm> #inc ...

  2. poj 1383 Labyrinth【迷宫bfs+树的直径】

    Labyrinth Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 4004   Accepted: 1504 Descrip ...

  3. POJ 1383 Labyrinth (bfs 树的直径)

    Labyrinth 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/E Description The northern part ...

  4. POJ 1383题解(树的直径)(BFS)

    题面 Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4997 Accepted: 1861 Descript ...

  5. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  6. poj 1985 Cow Marathon 树的直径

    题目链接:http://poj.org/problem?id=1985 After hearing about the epidemic of obesity in the USA, Farmer J ...

  7. POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)

    树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...

  8. POJ 2631 Roads in the North(树的直径)

    POJ 2631 Roads in the North(树的直径) http://poj.org/problem? id=2631 题意: 有一个树结构, 给你树的全部边(u,v,cost), 表示u ...

  9. POJ 1985 Cow Marathon(树的直径模板)

    http://poj.org/problem?id=1985 题意:给出树,求最远距离. 题意: 树的直径. 树的直径是指树的最长简单路. 求法: 两遍BFS :先任选一个起点BFS找到最长路的终点, ...

随机推荐

  1. DRF 视图家族及路由层补充

    目录 视图家族 一.views视图类 1.APIView类 2.GenericAPIView类(generics中) 二.mixins类:视图辅助工具 1.RetrieveModelMixin 2.L ...

  2. java拼接JSON串

    String str = "{\"route\":\"onGift\",\"time\":\"\",\&quo ...

  3. ubuntu系统共享桌面的使用和配置

    内容转载自我的博客 目录 1. ubuntu共享桌面 2. 局域网登录远程桌面 2.1 ubuntu使用remmina登录远程桌面 2.2 在windows登录远程桌面 2.3 Android使用RD ...

  4. go 报错 import cycle not allowed

    运行时报错,import cycle not allowed : 查了goole大概知道了原因,还是导包类的问题,我检察了一下我的代码库,发现我昨天划分几个工具文件,里面的两个文件相互引用,就导致报i ...

  5. 运营好帮手| 华为DTM助电商类应用实现营销数据快速跟踪

    对于电商来说,销售额就是生命线,业务运营人员需要实时关注订单量,交易额,支付转化率等,并从各种维度对比分析,无论增幅或降幅,都需要马上找到原因,落地运营手段进行干预.快速准确的得到各种营销数据就显得格 ...

  6. WEBAPI 的调用方式

    示例是调用谷歌短网址的API. 1. HttpClient方式 public static async void DoAsyncPost() { DateTime dateBegin = DateTi ...

  7. 『笔记』2-SAT

    前置 \(SAT\) 是适定性( \(Satisfiability\) )问题的简称.一般形式为 \(k \ -\) 适定性问题,简称 \(k-SAT\) .而当 \(k>2\) 时该问题为 \ ...

  8. 快速查找未打补丁的exp

    在windows DOS窗口下输入以下内容,输出为未打的补丁信息列表 systeminfo>vul.txt&(for %i in (KB977165 KB2160329 KB250366 ...

  9. Linux下查看文件内容的几种常用命令

    [常用] 1,cat     由第一行开始显示内容,并将所有内容输出 cat的功能是将文件从第一行开始连续的将内容输出在屏幕上.但是cat并不常用,原因是当文件大,行数比较多时,屏幕无法全部容下时,只 ...

  10. 怎么用Markdown在github上写书,并用pages展示

    怎么用git写书 安装环境 第一步 安装node npm 先检测自己电脑是否安装了node npm # 查看 node 版本 node -v # 查看 npm 版本 npm -v 复制代码 如果成功打 ...