The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow, each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 
The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

Output

Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

Sample Input

2
3 3
###
#.#
###
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######

Sample Output

Maximum rope length is 0.
Maximum rope length is 8.

Hint

Huge input, scanf is recommended. 
If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int c,r,dx,dy;
int ans;
char a[1005][1005];
int b[1005][1005];
int mx[4] = {0,0,1,-1};
int my[4] = {1,-1,0,0};
void dfs(int x,int y,int t)
{
b[x][y]=1;
if(ans<t)
{
dx=x;
dy=y;
ans=t;
}
int xx,yy,i;
for(i=0;i<4;i++)
{
xx=x+mx[i];
yy=y+my[i];
if(xx>-1&&xx<r&&yy>-1&&yy<c&&!b[xx][yy]&&a[xx][yy]!='#')
dfs(xx,yy,t+1);
}
b[x][y]=1;
}
int main()
{
int t,i,j,sx,sy;
scanf("%d",&t);
while(t--)
{
int l=0;
ans=0;
memset(b,0,sizeof(b));
scanf("%d %d",&c,&r);
for(i=0;i<r;i++)
{
scanf("%s",a[i]);
for(j=0;j<c&&l==0;j++)
if(a[i][j]=='.')
{
l=1;
sx=i;
sy=j;
}
}
dfs(sx,sy,0);
memset(b,0,sizeof(b));
dfs(dx,dy,0);
printf("Maximum rope length is %d.\n",ans);
}
}

  

我的代码:

 1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<algorithm>
5
6 using namespace std;
7
8 int r, c;
9 char a[1005][1005];
10 int num[1005][1005];
11 int n_step, max_step, nx, ny;
12 int dx[4] = {0, 1, 0, -1};
13 int dy[4] = {1, 0, -1, 0};
14
15 int dfs(int x, int y, int step)
16 {
17 n_step = step;
18 a[x][y] = '#';
19 for(int i = -1; i <= 1; i++)
20 {
21
22 max_step = max(max_step, n_step);
23 nx = x + dx[i];
24 ny = y + dy[i];
25 if(nx > 0 && nx <= r && ny > 0 && ny <= c && a[nx][ny] == '.')
26 {
27 n_step++;
28 dfs(nx, ny, n_step);
29 }
30 }
31 return max_step;
32 }
33
34 int main()
35 {
36 int t;
37
38 scanf("%d", &t);
39 while(t--)
40 {
41 n_step = 0;
42 max_step = 0;
43 scanf("%d %d", &r, &c);
44 getchar();
45 memset(num, 0, sizeof(num));
46 for(int i = 0; i < max(r, c) + 1; i++)
47 {
48 a[0][i] = '#';
49 a[i][0] = '#';
50 a[r+1][i] = '#';
51 a[i][c+1] = '#';
52 }
53
54 //cout << r << c <<endl;
55 for(int i = 1; i <= r; i++)
56 {
57 for(int j = 1; j <= c; j++)
58 {
59 scanf("%c", &a[i][j]);
60 }
61 getchar();
62 }
63
64 for(int i = 1; i <= r; i++)
65 {
66 for(int j = 1; j <= c; j++)
67 {
68 if(a[i][j] == '.')
69 {
70 //cout << "++" << i << j << endl;
71 int ans = dfs(i, j, 0);
72 printf("%d\n", ans);
73 break;
74 }
75 }
76 }
77
78
79 }
80 return 0;
81 }

I - 树的直径 POJ - 1383的更多相关文章

  1. 树的直径 poj 2631

    树的直径:从随意一点出发,BFS找到最远的距离,然后在从该点出发BFS找到最远的距离 #include <iostream> #include <algorithm> #inc ...

  2. poj 1383 Labyrinth【迷宫bfs+树的直径】

    Labyrinth Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 4004   Accepted: 1504 Descrip ...

  3. POJ 1383 Labyrinth (bfs 树的直径)

    Labyrinth 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/E Description The northern part ...

  4. POJ 1383题解(树的直径)(BFS)

    题面 Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4997 Accepted: 1861 Descript ...

  5. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  6. poj 1985 Cow Marathon 树的直径

    题目链接:http://poj.org/problem?id=1985 After hearing about the epidemic of obesity in the USA, Farmer J ...

  7. POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)

    树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...

  8. POJ 2631 Roads in the North(树的直径)

    POJ 2631 Roads in the North(树的直径) http://poj.org/problem? id=2631 题意: 有一个树结构, 给你树的全部边(u,v,cost), 表示u ...

  9. POJ 1985 Cow Marathon(树的直径模板)

    http://poj.org/problem?id=1985 题意:给出树,求最远距离. 题意: 树的直径. 树的直径是指树的最长简单路. 求法: 两遍BFS :先任选一个起点BFS找到最长路的终点, ...

随机推荐

  1. 小公举comm,快速比较两个排序文件

    前言 我们经常会有需求比较一个文件里的内容是否在另一个文件存在.假如我有一份监控列表的IP写入在了file1,我所有的机器IP写入在了file2,我要找出还有哪些机器没有在监控列表.以前的做法是写个两 ...

  2. tesseract-ocr和tesseract.exe is not installed or it's not in your path问题解决

    一.解决方案: 1.http://www.ddooo.com/softdown/94968.htm   打开下载的压缩包,找到"tesseract-ocr-setup-3.02.02.exe ...

  3. 关于Java高并发编程你需要知道的“升段攻略”

    关于Java高并发编程你需要知道的"升段攻略" 基础 Thread对象调用start()方法包含的步骤 通过jvm告诉操作系统创建Thread 操作系统开辟内存并使用Windows ...

  4. vue导出数据excel

    下载两个依赖 npm install file-save xlsx 创建两个文件 Blob.js与Export2Excel.js 参考地址:文件地址 在Export2Excel.js中修改引入地址,注 ...

  5. ISC BIND9 - 最详细、最认真的从零开始的BIND 9 服务讲解

    DNS and BIND 服务的搭建说明 目录 目录 DNS and BIND 服务的搭建说明 1. 背景 1.1 DNS 1.2 FQDN 1.3 BIND 1.4 本文中搭建模拟DNS服务网络虚拟 ...

  6. Zeebe服务学习1-简单部署与实现demo

    1.Zeebe是什么? Camunda公司研发的工作流引擎Zeebe,目标是对微服务的编排.具体详细介绍可以参考官网:https://zeebe.io/what-is-zeebe/ 2.背景 随着微服 ...

  7. 基于角色访问控制RBAC权限模型的动态资源访问权限管理实现

    RBAC权限模型(Role-Based Access Control) 前面主要介绍了元数据管理和业务数据的处理,通常一个系统都会有多个用户,不同用户具有不同的权限,本文主要介绍基于RBAC动态权限管 ...

  8. 该死的端口占用!教你用 Shell 脚本一键干掉它!

    1. 前言 大家好,我是安果! 在 Web 开发中,经常会遇到「端口被占用」的场景 常规解决方案是: 使用 lsof -i 命令查询占用端口的进程 PID 利用 kill -9 PID 干掉目标进程 ...

  9. Mardown语法

    1.什么是Markdown Mardown是一种文本标记语言,使用它,能让我们更加专注于内容的输出,而不是排版样式. 我们平常使用的.txt文档书写的文字是没有样式的,使用Markdown语法就可以给 ...

  10. 振兴中华(蓝桥杯13年第四届省赛真题 JAVA-B组)

    思路:因为只能横向或纵向跳到相邻的格子里,所以到'华'字有两种方法:①从左边的中横向跳过来 ②从上边的中纵向跳过来 直接递推即可. 标题: 振兴中华 小明参加了学校的趣味运动会,其中的一个项目是:跳格 ...