1142 - Summing up Powers (II)
Time Limit: 2 second(s) Memory Limit: 32 MB

Shanto is learning how to power up numbers and he found an efficient way to find kth power of a matrix. He was quite happy with his discovery. Suddenly his sister Natasha came to him and asked him to find the summation of the powers. To be specific his sister gave the following problem.

Let A be an n x n matrix. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication. You are to write a program that computes the matrix A + A2 + A3 + ... + Ak.

Shanto smiled and thought that it would be an easy one. But after a while he found that it's tough for him. Can you help him?

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with two integers n (1 ≤ n ≤ 30) and k (1 ≤ k ≤ 109). Each of the next n lines will contain n non-negative integers (not greater than 10).

Output

For each case, print the case number and the result matrix. For each cell, just print the last digit. See the samples for more details.

Sample Input

Output for Sample Input

2

3 2

1 4 6

6 5 2

1 2 3

3 10

1 4 6

6 5 2

1 2 3

Case 1:

208

484

722

Case 2:

868

620

546


PROBLEM SETTER: JANE ALAM JAN
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<math.h>
7 #include<queue>
8 using namespace std;
9 typedef long long LL;
10 typedef struct node
11 {
12 int m[70][70];
13 node()
14 {
15 memset(m,0,sizeof(m));
16 }
17 } maxtr;
18 int ans[70][70];
19 void E(node *nn,int n);
20 maxtr ju(int n);
21 maxtr quick(node ju,int n,int m);
22 int main(void)
23 {
24 int i,j,k;
25 int n,m;
26 int s;
27 cin>>k;
28 for(s=1; s<=k; s++)
29 {
30 scanf("%d %d",&n,&m);
31 for(i=0; i<n; i++)
32 {
33 for(j=0; j<n; j++)
34 {
35 scanf("%d",&ans[i][j]);
36 ans[i][j]%=10;
37 }
38 }node aa;aa=ju(n);
39 aa=quick(aa,n,m);printf("Case %d:\n",s);
40 for(i=0;i<n;i++)
41 {
42 for(j=n;j<2*n;j++)
43 {
44 printf("%d",aa.m[i][j]);
45 }printf("\n");
46 }
47 }return 0;
48 }
49 void E(node *nn,int n)
50 {
51 int i,j,k;
52 for(i=0; i<n; i++)
53 {
54 for(j=0; j<n; j++)
55 {
56 if(i==j)
57 nn->m[i][j]=1;
58 else nn->m[i][j]=0;
59 }
60 }
61 }
62 maxtr ju(int n)
63 {
64 int i,j,k;
65 maxtr nn;
66 for(i=0; i<n; i++)
67 {
68 for(j=0; j<n; j++)
69 {
70 nn.m[i][j]=ans[i][j];
71 }
72 }
73 for(i=0; i<n; i++)
74 {
75 for(j=n; j<2*n; j++)
76 {
77 nn.m[i][j]=ans[i][j-n];
78 }
79 }
80 node cc;
81 E(&cc,n);
82 for(i=n; i<2*n; i++)
83 {
84 for(j=n; j<2*n; j++)
85 {
86 nn.m[i][j]=cc.m[i-n][j-n];
87 }
88 }return nn;
89 }
90 maxtr quick(node ju,int n,int m)
91 { node ee;
92
93 E(&ee,2*n);
94 int i,j,k;
95 int s;
96 while(m)
97 {
98 if(m&1)
99 {
100 node cc;
101 for(i=0; i<2*n; i++)
102 {
103 for(j=0; j<2*n; j++)
104 {
105 for(s=0; s<2*n; s++)
106 {
107 cc.m[i][j]=(ju.m[i][s]*ee.m[s][j]+cc.m[i][j])%10;
108 }
109 }
110 }
111 ee=cc;
112 }
113 node cc;
114 for(i=0; i<2*n; i++)
115 {
116 for(j=0; j<2*n; j++)
117 {
118 for(s=0; s<2*n; s++)
119 {
120 cc.m[i][j]=(ju.m[i][s]*ju.m[s][j]+cc.m[i][j])%10;
121 }
122 }
123 }
124 ju=cc;
125 m/=2;
126 }
127 return ee;
128 }

1142 - Summing up Powers (II)的更多相关文章

  1. lightOJ 1132 Summing up Powers(矩阵 二分)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1132 题意:给出n和m.求sum(i^m)%2^32.(1<=i<=n) ...

  2. lightoj1132—Summing up Powers (取膜技巧&&组合数应用)

    题目链接:https://vjudge.net/problem/LightOJ-1132 题目意思:(1K + 2K + 3K + ... + NK) % 232 矩阵快速幂的题目一般都很短,这道题也 ...

  3. LightOJ 1132 Summing up Powers:矩阵快速幂 + 二项式定理

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1132 题意: 给定n.k,求(1K + 2K + 3K + ... + NK) % 2 ...

  4. LightOJ - 1132 Summing up Powers 矩阵高速幂

    题目大意:求(1^K + 2^K + 3K + - + N^K) % 2^32 解题思路: 借用别人的图 能够先打表,求出Cnm,用杨辉三角能够高速得到 #include<cstdio> ...

  5. [伯努利数] poj 1707 Sum of powers

    题目链接: http://poj.org/problem?id=1707 Language: Default Sum of powers Time Limit: 1000MS   Memory Lim ...

  6. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  7. Leetcode 笔记 117 - Populating Next Right Pointers in Each Node II

    题目链接:Populating Next Right Pointers in Each Node II | LeetCode OJ Follow up for problem "Popula ...

  8. 函数式Android编程(II):Kotlin语言的集合操作

    原文标题:Functional Android (II): Collection operations in Kotlin 原文链接:http://antonioleiva.com/collectio ...

  9. 统计分析中Type I Error与Type II Error的区别

    统计分析中Type I Error与Type II Error的区别 在统计分析中,经常提到Type I Error和Type II Error.他们的基本概念是什么?有什么区别? 下面的表格显示 b ...

随机推荐

  1. 日常Java 2021/10/5

    java 异常处理 Throwable中包括Error 和Exception,Exception包括IOException和RuntimeException 抛出异常 1.异常运算条件 Arithme ...

  2. 大数据学习day31------spark11-------1. Redis的安装和启动,2 redis客户端 3.Redis的数据类型 4. kafka(安装和常用命令)5.kafka java客户端

    1. Redis Redis是目前一个非常优秀的key-value存储系统(内存的NoSQL数据库).和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list ...

  3. Oracle之DBMS_LOCK包用法详解

    概述与背景 某些并发程序,在高并发的情况下,必须控制好并发请求的运行时间和次序,来保证处理数据的正确性和完整性.对于并发请求的并发控制,EBS系统可以通过Concurrent Program定义界面的 ...

  4. [学习总结]7、Android AsyncTask完全解析,带你从源码的角度彻底理解

    我们都知道,Android UI是线程不安全的,如果想要在子线程里进行UI操作,就需要借助Android的异步消息处理机制.之前我也写过了一篇文章从源码层面分析了Android的异步消息处理机制,感兴 ...

  5. ORACEL 创建DIRECTORY

    oracle要直接对文件进行读写必须先创建一个DIRECTORY. 语法如下: CREATE DIRECTORY UTL_FILE_DIR AS '/home/oracle/oradir'; 可以通过 ...

  6. LoadRunner中怎么设置密码参数化与用户名关联

    对密码参数化时从parameter里的"Select next row"列表中选择Same Line As这一选项,意思就是每一个密码参数化取值与对应行的用户名关联起来了

  7. List如何一边遍历,一边删除?

    1.新手常犯的错误 可能很多新手(包括当年的我,哈哈)第一时间想到的写法是下面这样的: public static void main(String[] args) { List<String& ...

  8. java客户端的elasticSearch索引库的相关操作

    package com.hope.es;import org.elasticsearch.client.transport.TransportClient;import org.elasticsear ...

  9. 【Spark】【RDD】从HDFS创建RDD

    1.在HDFS根目录下创建目录(姓名学号) hdfs dfs -mkdir /zwj25 hdfs dfs -ls / 访问 http://[IP]:50070 2.上传本地文件到HDFS hdfs ...

  10. Springboot整合MongoDB(Eclipse版本)

    IDEA版本其实也差不多的,大同小异 简单Demo地址: https://blog.csdn.net/shirukai/article/details/82152243 Springboot项目整合M ...