Jerry之前的两篇文章介绍了如何通过Restful API的方式,消费SAP Leonardo上预先训练好的机器学习模型:

如何在Web应用里消费SAP Leonardo的机器学习API
部署在SAP Cloud Platform CloudFoundry环境的应用如何消费

当时Jerry提到,Product Image Classification API只支持29种产品类别:

如果我们开发应用时需要支持额外的产品类别,就得需要自行提供该产品类别的图片并重新训练。

下面是SAP Leonardo上机器学习模型的重新训练步骤。

假设我们期望重新训练之后,Product Image Classfication这个模型能够识别出不同种类的花,那么我们首先得搞到大量花的图片。Tensorflow的官网上,已经体贴地给想做模型训练的学习者们,提供了一个做练习用的压缩包,里面包含了大量各式花的图片。
http://download.tensorflow.org/example_images/flower_photos.tgz

SAP Leonardo接受的能用于重新训练模型的数据集,必须符合下列的层级结构,即training, validation和test三个文件夹下面,分别包含以产品类别命名的字文件夹,且数据规模之比为8:1:1.

有了用于训练的数据后,下一步就是把这些数据上传到SAP Leonardo的模型在线存储平台上。

Jerry的前一篇文章部署在SAP Cloud Platform CloudFoundry环境的应用如何消费曾经介绍了如何在SAP云平台上创建Leonardo机器学习的服务实例,这个实例的service key里包含了一个IMAGE_RETRAIN_API_URL,可以用来获取在线存储的url:

向这个url发送一个HTTP get请求,得到在线存储的url:

把这个url粘贴到浏览器里,输入postman里返回的accessKey和secretKey登录,就能以web的方式访问这个在线存储了:

下一步是把本地的训练文件上传到这个部署在AWS上的在线存储上去。

首先用命令行mc config host定义一个名为sapjerrys3的远程站点,将上一步从postman获得的AWS在线存储url,accessKey和secret绑定到这个站点上:

然后使用命令行上传文件:
mc.exe cp -r C:\Code\MachineLearningStudy\flowersjerry sapjerrys3\data
大概十几分钟后,文件上传完毕:

此时可以从浏览器里看到AWS在线存储上传完毕的训练文件。

现在可以提交一个后台作业了,让Leonardo去处理这些上传好的文件,ABAP顾问们可以把这个动作理解成在Netweaver事务码SM36里定义一个后台作业并提交。发送一个HTTP post请求,除了下图jobName, dataset和modelName需要自己维护外,其他字段都使用SAP官网上定义的默认值。

这个请求会返回一个后台作业ID,抄下来后把它拼到url末尾,然后重新发送一个HTTP get请求,即可查询到这个作业的执行情况。Jerry做的时候,等待了大概五分钟,作业状态就变为SUCCEEDED了。

因为上一篇和本文做的练习都是在SAP Cloud Platform的CloudFoundry环境中进行的,因此我们也可以用cf命令行来查询这些作业的执行情况:

cf sapml retraining jobs -m image

如果遇到作业状态为FAILED的情况,去AWS在线存储上查看以作业名称命名的文件夹,里面包含了详细的训练日志,可以用作错误分析:

在这个训练好的模型能正式被使用之前,我们还需要对其进行部署,类似ABAP Netweaver里的“激活”动作。

和提交训练的后台作业类似,模型部署也是一个异步执行的步骤,提交部署请求后,得到一个部署作业ID:ms-26c5a22c-6d07-4164-8222-a4182969162d

根据这个部署作业ID可以查询模型部署状态:

成功部署后,我们就可以用Restful API消费这个模型了,url的格式为:https://mlfinternalproduction-image-classifier.cfapps.sap.hana.ondemand.com/api/v2/image/classification/models//versions/1

我从网络上随便找一张向日葵的照片,

将这张图片作为HTTP POST的参数发给我重新训练并且部署好的模型flowerjerrymodel,得到的结果显示,重新训练后的模型认为这张图片有大约87%的可能性是代表向日葵。


接下来有时间的话,我打算搜集一些异形的图片来训练,看SAP Leonardo能不能把我桌上挂着的这个异形吊饰识别出来。感谢阅读。

要获取更多Jerry的原创文章,请关注公众号"汪子熙":

如何对SAP Leonardo上的机器学习模型进行重新训练的更多相关文章

  1. 使用SAP Leonardo上的机器学习服务提取图片的特征向量

    要想提取图片的特征向量,首先得知道特征向量是什么. 我们假设这样一个服务场景,技师上门维修某设备,发现上面某零件损坏了,假设这位技师由于种种原因,没能根据自己的经验识别出这个零件的型号.此时技师掏出自 ...

  2. SAP Leonardo图片处理相关的机器学习服务在SAP智能服务场景中的应用

    本文作为Jerry最近正在做的一个项目的工作思路的梳理. 我们假设这样一个服务场景,技师上门维修某设备,发现设备上某零件损坏了,假设这位技师由于种种原因,没能根据自己的经验识别出这个零件的型号.此时技 ...

  3. 部署在SAP Cloud Platform CloudFoundry环境的应用如何消费SAP Leonardo机器学习API

    Jerry的前一篇文章 如何在Web应用里消费SAP Leonardo的机器学习API 里介绍的例子是Neo测试环境的Web应用消费sandbox版本的机器学习API,url如下: https://s ...

  4. 使用Java程序消费SAP Leonardo的机器学习API

    以sap leonardo作为关键字在微信上搜索,能搜到不少文章.但是我浏览了一下,好像没有发现有从具体编程角度上来介绍的.所以我就贡献一篇. 需求 开发一个Java程序,用户可以指定一张图片,该Ja ...

  5. 用PMML实现机器学习模型的跨平台上线

    在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环 ...

  6. 用PMML实现python机器学习模型的跨平台上线

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  7. 如何在Web应用里消费SAP Leonardo的机器学习API

    去年5月的时候,Jerry曾经写了一篇文章:使用Java程序消费SAP Leonardo的机器学习API,而最近另外做的一个项目,需要在Web应用里做同样的事情. 因为有了前一篇文章的铺垫,避免了很多 ...

  8. 读懂SAP Leonardo物联网平台

    读懂SAP Leonardo物联网平台 https://blog.csdn.net/weixin_42137700/article/details/81903290 本文比较系统.全面地介绍了SAP ...

  9. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

随机推荐

  1. React——相关工具概述

    Create a New React App Use an integrated toolchain for the best user and developer experience. This ...

  2. -bash: netstat: 未找到命令

    [root@localhost ~]# netstat -lunpt -bash: netstat: 未找到命令 [root@localhost ~]# yum -y install net-tool ...

  3. 重置密码解决MySQL for Linux

    重置密码解决MySQL for Linux错误 ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using passwor ...

  4. 浅谈Delphi高效使用TreeView

    本来我一直都是使用递归算法, 效率很低 下边这段代码是我原来写的 ------------------------------------------------------------------- ...

  5. vmware安装密钥

    VMware虚拟机已升级至14版本,之前的12版本的秘钥已经无法使用,在此分享一下VMware Workstation 14永久激活密钥: CG54H-D8D0H-H8DHY-C6X7X-N2KG6 ...

  6. iOS笔试题02

    1. Difference between shallow copy and deep copy? 1> 浅拷贝:指针(地址)拷贝,不会产生新对象 2> 深拷贝:内容拷贝,会产生新对象 2 ...

  7. 域名购买、SSL证书申请使用和本地服务映射外网

    万网购买域名 1.在如下网址购买,价格不是很贵,几块钱一年的都有:https://wanwang.aliyun.com/domain/?spm=5176.100251.111252.24.4ddd4f ...

  8. selenium + python 环境配置 (四)之启动Firefox

    火狐浏览器自身适配selenium   因此不需要再安装 直接代码启动: __author__ = 'admin' #作者 # -*- coding:utf-8 -*- # 建议所有都加编码 from ...

  9. Python基础——循环语句、条件语句、函数、类

    注:运行环境  Python3 1.循环语句 (1)for循环 注:for i in range(a, b):  #从a循环至b-1 for i in range(n):      #从0循环至n-1 ...

  10. error PRJ0003 : 生成“rc.exe”时出错

    完美解决 visual studio 2008运行时 error PRJ0003 : 生成“rc.exe”时出错 步骤如下 : 1.运行vs2008安装程序,点击安装或删除程序.在“选择要安装的功能” ...