ML-L1、L2 正则化
出现过拟合时,使用正则化可以将模型的拟合程度降低一点点,使曲线变得缓和。
L1正则化(LASSO)
正则项是所有参数的绝对值的和。正则化不包含theta0,因为他只是偏置,而不影响曲线的摆动幅度。
\]
# 使用pipeline进行封装
from sklearn.linear_model import Lasso
# 使用管道封装lasso
def LassoRegssion(degree, alpha):
return Pipeline([
("poly", PolynomialFeatures(degree = degree)),
("std_scaler", StandardScaler()),
("lasso", Lasso(alpha=alpha))
])
使用\(\alpha=0.01\) 的正则化拟合20阶多项式
lasso_reg = LassoRegssion(20, 0.01)
lasso_reg.fit(X_train, y_train)
y_predict = lasso_reg.predict(X_test)
plot_model(lasso_reg)
MSE 1.149608084325997

\(\alpha=0.1\)
MSE 1.1213911351818648

\(\alpha=1\) 时,均方误差又变大了,正则化过度了。模型变成了直线,所有参数都接近0了。因为没有对\(\theta_0\)进行正则化,所以偏置的值没有变化
1.8408939659515595

L2正则化(岭回归)
1/2可加可不加,因为方便求导。对J()求最小值时,也将\(\theta\)的值变小。当\(\alpha\)越大,右边受到的影响就越大,\(\theta\)的值就越小
\]
使用pipeline封装Ridge
from sklearn.linear_model import Ridge
# 使用管道封装岭回归
def RidgeRegression(degree, alpha):
return Pipeline([
("poly", PolynomialFeatures(degree = degree)),
("std_scaler", StandardScaler()),
("ridge_reg", Ridge(alpha = alpha))
])
使用20阶多项式拟合,\(\alpha=0\)即没有正则化。
ridge_reg100 = RidgeRegression(20, 0)
ridge_reg100.fit(X_train, y_train)
y_predict = ridge_reg100.predict(X_test)
plot_model(ridge_reg100)
# MSE 167.94010860994555

\(\alpha=0.0001\)
ridge_reg100 = RidgeRegression(20, 0.0001)
# MSE 1.3233492754136291

\(\alpha=10\)
ridge_reg100 = RidgeRegression(20, 10)
# MSE 1.1451272194878865

\(\alpha=1000\)
ridge_reg100 = RidgeRegression(20, 10000)
# MSE 1.7967435583384

对比
- LASSO更趋向于将一部分参数变为0,更容易得到直线。Ridge更容易得到曲线。
- \(\alpha\)越大,正则化的效果越明显
两个正则化的不同仅仅在于正则化项的不同:
\]
\]
常见的对比还有:
MSE 和 MAE :
\]
\]
欧拉距离和曼哈顿距离:
\]
还有明可夫斯基距离:
\]
弹性网(待定)
就是将两个范式进行结合。
\]
ML-L1、L2 正则化的更多相关文章
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- L0,L1,L2正则化浅析
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...
- L1,L2正则化代码
# L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
- Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x). Spark中实现了: (1)普通最小二乘法 (2)岭回归(L2正规化) (3)La ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
随机推荐
- C++ 漫谈哈夫曼树
1. 前言 什么是哈夫曼树? 把权值不同的n个结点构造成一棵二叉树,如果此树满足以下几个条件: 此 n 个结点为二叉树的叶结点 . 权值较大的结点离根结点较近,权值较小的结点离根结点较远. 该树的带权 ...
- postgresql用户与权限管理
pg使用角色的概念管理数据库访问权限,角色是一系列相关权限的集合.为了管理方便,通常把一系列先关的权限赋予给一个角色,如果哪个用户需要这些权限,就把这些角色赋予给响应的用户. 由于用户也拥有一系列的相 ...
- qt unknown type name编译报错记录
在classA中include class B,然后定义成员变量的时候,报错unknown type name了. 一共有两种可能造成这种问题: 1.circle include,同时在classA中 ...
- 第四章 部署K8s前准备工作
一.主机准备 1.硬件 准备5台2C/2g/50g虚拟机: Centos7.6系统 2.集群规划 使用10.4.7.0/24网络 IP 主机名 10.4.7.11 hdss7-11.host.com ...
- Taurus.MVC-Java 版本打包上传到Maven中央仓库(详细过程):3、Maven独立插件安装与settings.xml配置
文章目录: Taurus.MVC-Java 版本打包上传到Maven中央仓库(详细过程):1.JIRA账号注册 Taurus.MVC-Java 版本打包上传到Maven中央仓库(详细过程):2.PGP ...
- Kafka开启SASL认证 【windowe详细版】
一.JAAS配置 Zookeeper配置JAAS zookeeper环境下新增一个配置文件,如zk_server_jass.conf,内容如下: Server { org.apache.kafka.c ...
- 5.云原生之Docker容器网络介绍与实践
转载自:https://www.bilibili.com/read/cv15185166/?from=readlist 例如, 当在一台未经过特殊网络配置的centos 或 ubuntu机器上安装完d ...
- Grafana Loki 学习之踩坑记
转发自:https://mp.weixin.qq.com/s/zfXNEkdDC9Vqd9lh1ptC1g Grafana 出品的 loki 日志框架完美地与 kubernetes 的 label 理 ...
- docker垃圾处理
1 查找docker文件夹 find / -name docker 2 列举文件夹大小 du -h --time --max-depth=1 . df -h df -TH 3 Docker占用磁盘空间 ...
- 使用容器运行的minio配置https(TLS)访问
使用certgen生成证书 下载地址:https://github.com/minio/certgen/releases/tag/v0.0.2 下载地址:https://files.cnblogs.c ...