ML-L1、L2 正则化
出现过拟合时,使用正则化可以将模型的拟合程度降低一点点,使曲线变得缓和。
L1正则化(LASSO)
正则项是所有参数的绝对值的和。正则化不包含theta0,因为他只是偏置,而不影响曲线的摆动幅度。
\]
# 使用pipeline进行封装
from sklearn.linear_model import Lasso
# 使用管道封装lasso
def LassoRegssion(degree, alpha):
return Pipeline([
("poly", PolynomialFeatures(degree = degree)),
("std_scaler", StandardScaler()),
("lasso", Lasso(alpha=alpha))
])
使用\(\alpha=0.01\) 的正则化拟合20阶多项式
lasso_reg = LassoRegssion(20, 0.01)
lasso_reg.fit(X_train, y_train)
y_predict = lasso_reg.predict(X_test)
plot_model(lasso_reg)
MSE 1.149608084325997

\(\alpha=0.1\)
MSE 1.1213911351818648

\(\alpha=1\) 时,均方误差又变大了,正则化过度了。模型变成了直线,所有参数都接近0了。因为没有对\(\theta_0\)进行正则化,所以偏置的值没有变化
1.8408939659515595

L2正则化(岭回归)
1/2可加可不加,因为方便求导。对J()求最小值时,也将\(\theta\)的值变小。当\(\alpha\)越大,右边受到的影响就越大,\(\theta\)的值就越小
\]
使用pipeline封装Ridge
from sklearn.linear_model import Ridge
# 使用管道封装岭回归
def RidgeRegression(degree, alpha):
return Pipeline([
("poly", PolynomialFeatures(degree = degree)),
("std_scaler", StandardScaler()),
("ridge_reg", Ridge(alpha = alpha))
])
使用20阶多项式拟合,\(\alpha=0\)即没有正则化。
ridge_reg100 = RidgeRegression(20, 0)
ridge_reg100.fit(X_train, y_train)
y_predict = ridge_reg100.predict(X_test)
plot_model(ridge_reg100)
# MSE 167.94010860994555

\(\alpha=0.0001\)
ridge_reg100 = RidgeRegression(20, 0.0001)
# MSE 1.3233492754136291

\(\alpha=10\)
ridge_reg100 = RidgeRegression(20, 10)
# MSE 1.1451272194878865

\(\alpha=1000\)
ridge_reg100 = RidgeRegression(20, 10000)
# MSE 1.7967435583384

对比
- LASSO更趋向于将一部分参数变为0,更容易得到直线。Ridge更容易得到曲线。
- \(\alpha\)越大,正则化的效果越明显
两个正则化的不同仅仅在于正则化项的不同:
\]
\]
常见的对比还有:
MSE 和 MAE :
\]
\]
欧拉距离和曼哈顿距离:
\]
还有明可夫斯基距离:
\]
弹性网(待定)
就是将两个范式进行结合。
\]
ML-L1、L2 正则化的更多相关文章
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- L0,L1,L2正则化浅析
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...
- L1,L2正则化代码
# L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
- Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x). Spark中实现了: (1)普通最小二乘法 (2)岭回归(L2正规化) (3)La ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
随机推荐
- RS485自动收发切换电路 [原创www.cnblogs.com/helesheng]
RS485是最常见的一种远距离可靠传输和组网的UART串口信号接口协议.与同样传输UART串口信号的RS422协议相比,RS485使用半双工通信,即只有一个信道,在同一时刻要么从A到B,要么从B到A传 ...
- Mybatis介绍、使用IDEA快速入门
1. Mybatis概念 MyBatis 是一款优秀的持久层框架,用于简化 JDBC 开发 JavaEE三层架构:表现层.业务层.持久层 JDBC 与 MyBatis 对比: MyBatis 本是 A ...
- WebStorm 配置 Vue3 的文件模板
WebStorm 默认的 Vue 模板不是 setup 函数(组合式 API)模板,而是 Options API 模板.在设置中搜索 File and Code Templates 编辑创建 vue ...
- Web 布局设计(一):固定侧边栏
前言 闲着无事,做一些实战练习,今天实现一个如标题所示的布局设计.通过此次布局设计,我希望掌握position属性值 fixed.absolute.relative.width和height属性值 i ...
- B/S结构通信系统原理
本文介绍JavaWeb的B/S结构通信原理 概念: Javaweb中B/S架构是一种系统架构形式,这里的B是Browser(浏览器),S是Server(服务器),是一种系统的架构形式,有 ...
- 【AGC】如何使用认证服务与云数据库处理用户信息
使用场景 华为 AGC认证服务可以为应用快速构建安全可靠的用户认证系统,可以实现多种方式关联认证登录.而如何处理这些多种登录方式的用户信息,例如在应用中发布一个活动,哪些用户参加了哪一个活动,这些信 ...
- 完全解析Array.apply(null, { length: 1000 })
Array.apply(null, { length: 1000 }) 点击打开视频讲解更加详细 在阅读VueJS教程时有这么段demo code: render: function (createE ...
- 阿里云CentOS7安装K8S
1. 在阿里云山申请三台云服务器 1.1 环境准备 完成配置后的信息 服务器IP 操作系统 CPU 内存 硬盘 主机名 节点角色 172.18.119.145 centos7 2 4G 50G k8s ...
- Batch Norm 与 Layer Norm 比较
一.结论 Batch Norm一般用于CV领域,而Layer Norm一般用于NLP领域 Batch Norm需要计算全局平均,而Layer Norm不需要计算全局平均 二.Batch Norm Ba ...
- File类、FileOutputStream
day01 File类 File类的每一个实例可以表示硬盘(文件系统)中的一个文件或目录(实际上表示的是一个抽象路径) 使用File可以做到: 1:访问其表示的文件或目录的属性信息,例如:名字,大小, ...