迁移学习《Asymmetric Tri-training for Unsupervised Domain Adaptation》
论文信息
论文标题:Asymmetric Tri-training for Unsupervised Domain Adaptation
论文作者:Kuniaki Saito, Y. Ushiku, T. Harada
论文来源:27 February 2017——ICML
论文地址:download
论文代码:download
视屏讲解:click
1 介绍
简单的域分布对齐可能无法提供有效的判别表示,为学习目标域的判别表示,本文假设人工标记目标样本可以产生良好的表示。
在本文中,提出了一种用于无监督域适应的非对称三重训练方法,将伪标签分配给未标记的样本,并像训练真实标签一样训练神经网络。 本文工作,不对称地使用三个网络。 不对称是指两个网络用于标记未标记的目标样本,一个网络由样本训练以获得目标判别表示。
2 相关工作
[1] 研究了伪标签在神经网络中的作用。他们认为,使用伪标签训练分类器的效果等同于熵正则化,从而导致类之间的低密度分离。
3 方法
算法伪代码:
为使 $F_{1}$, $F_{2}$ 从不同视角分类样本,将分类器权重 $\left|W_{1}^{T} W_{2}\right|$ 考虑到损失函数:
$E\left(\theta_{F}, \theta_{F_{1}}, \theta_{F_{2}}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[L_{y}\left(F_{1} \circ F\left(x_{i}\right), y_{i}\right)+L_{y}\left(F_{2} \circ F\left(x_{i}\right), y_{i}\right)\right]+\lambda\left|W_{1}^{T} W_{2}\right| \quad\quad\quad(1)$
伪代码主要分为两部分:
- 第一部分:使用训练集训练整个网络,$F_{1}$, $F_{2}$ 使用 $\text{Eq.1}$ 优化,$F_{t}$ 使用标准的分类损失训练;
- 第二部分:为目标域样本提供伪标签,要求1:$F_{1}$, $F_{2}$ 的预测类别相同;要求2:$F_{1}$, $F_{2}$ 预测的概率大于 $0.9$ 或 $0.95$;
为防止过拟合得到伪标签,重采样参与的伪标签样本。设置 $N_{\text {init }}=5000$ ,然后逐步增 加参与的数量 $N_{t}=k / 20 * n$ , $n$ 为所有目标域样本数量。设置参与训练的价标签样本最大数量为 $40000$。
通过构建仅在目标域样本上训练的特定于目标域的网络,将学习判别性表示。但是仅使用有噪声的伪标签样本训练,网络可能无法学习有用的表示。然后我们使用源域和伪标签样本训练三个分类器以保证准确率。同随着训练, $F$ 将学习目标域判别性表示,使分类器 $F_{1}$, $F_{2}$ 的正确率提升。这个周期逐渐增强目标域上的准确率。
[1] Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In ICML workshop on Challenges in Representation Learning, 2013.
迁移学习《Asymmetric Tri-training for Unsupervised Domain Adaptation》的更多相关文章
- 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》
论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...
- 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...
- 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...
- 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...
- 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》
论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...
- 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...
- Unsupervised Domain Adaptation by Backpropagation
目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...
- Deep Transfer Network: Unsupervised Domain Adaptation
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...
- Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition
年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.
- 论文笔记:Unsupervised Domain Adaptation by Backpropagation
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...
随机推荐
- linux系统分类
1.RedHat系列:Redhat.Centos.Fedora等 2.Debian系列:Debian.Ubuntu等 RedHat 系列 1 常见的安装包格式 rpm包,安装rpm包的命令是" ...
- 【Operating System】——An interesting question on Process Creation
In the book Operating System Concepts- 9th Edition - Chapter 3 - Page 117 - Page 120 it says: How do ...
- vue项目浏览器ioc小图标
1 先有一个需要图片,png .jpg ...格式都可以 2 把图片转换成 .con 格式的图标 ,http://www.bitbug.net/使用比特虫转换 ,目标尺寸:16*16 或者 32*3 ...
- kubernetes系列—Ubuntu下搭建Kubernetes集群--k8s部署
1.kubernetes安装介绍 1.1 K8S架构图 1.2 K8S搭建安装示意图 2.安装kubernetes 2.1 关闭防火墙 在每台机器上关闭防火墙: ① 关闭服务,并设为开机不自启 $ ...
- PR2022(Premiere Pro 2022)Mac/win最新中文版
Adobe Premiere Pro 2022 Mac/win是用于专业级别的视频编辑软件,一个基于时间轴的视频处理工具,具有许多用于生成高端视频的不同功能.Adobe Premiere Pro最重要 ...
- Spring Boot统一日志框架
一.日志框架的选择 市面上常见的日志框架有很多,它们可以被分为两类:日志门面(日志抽象层)和日志实现,如下表. 日志分类 描述 举例 日志门面(日志抽象层) 为 Java 日志访问提供一套标准和规范 ...
- Informatica常用组件整理
1. 表达式转换组件 (expression) expression 属于被动组件类型(passive),是一种行级表达式,不改变数据行数,功能强大,操作简单. 主要在以下情况下应用: 对流入数据的类 ...
- 调用mglearn时的报错 TypeError: __init__() got an unexpected keyword argument 'cachedir'
import mglearn的时候发生的报错 原因是调用了joblib包中的memory类,但是cachedir这个参数已经弃用了 查到下面帖子之后改掉cachedir解决问题 https://blo ...
- pip下载时使用国内镜像 设置pip.ini文件
https://blog.csdn.net/u011107575/article/details/109901086 https://www.python.org/ftp/python/https:/ ...
- k8s configmap 配置分离
ConfigMap ConfigMap用于保存配置珊数据的键值对,可以用来保存单个属性,也可以用来保存配置文件.一张图解释 上图就是整个ConfigMap的生命周期以及使用方式, ConfigMap的 ...