论文信息

论文标题:Asymmetric Tri-training for Unsupervised Domain Adaptation
论文作者:Kuniaki SaitoY. UshikuT. Harada
论文来源:27 February 2017——ICML
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  简单的域分布对齐可能无法提供有效的判别表示,为学习目标域的判别表示,本文假设人工标记目标样本可以产生良好的表示。

  在本文中,提出了一种用于无监督域适应的非对称三重训练方法,将伪标签分配给未标记的样本,并像训练真实标签一样训练神经网络。 本文工作,不对称地使用三个网络。 不对称是指两个网络用于标记未标记的目标样本,一个网络由样本训练以获得目标判别表示。

2 相关工作

  [1] 研究了伪标签在神经网络中的作用。他们认为,使用伪标签训练分类器的效果等同于熵正则化,从而导致类之间的低密度分离。

3 方法

  整体框架:

  

  算法伪代码:

  

  为使 $F_{1}$, $F_{2}$ 从不同视角分类样本,将分类器权重 $\left|W_{1}^{T} W_{2}\right|$ 考虑到损失函数:

    $E\left(\theta_{F}, \theta_{F_{1}}, \theta_{F_{2}}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[L_{y}\left(F_{1} \circ F\left(x_{i}\right), y_{i}\right)+L_{y}\left(F_{2} \circ F\left(x_{i}\right), y_{i}\right)\right]+\lambda\left|W_{1}^{T} W_{2}\right|  \quad\quad\quad(1)$

  伪代码主要分为两部分:

    • 第一部分:使用训练集训练整个网络,$F_{1}$, $F_{2}$ 使用 $\text{Eq.1}$ 优化,$F_{t}$ 使用标准的分类损失训练;
    • 第二部分:为目标域样本提供伪标签,要求1:$F_{1}$, $F_{2}$  的预测类别相同;要求2:$F_{1}$, $F_{2}$  预测的概率大于 $0.9$ 或 $0.95$;

  为防止过拟合得到伪标签,重采样参与的伪标签样本。设置 $N_{\text {init }}=5000$ ,然后逐步增 加参与的数量 $N_{t}=k / 20 * n$ , $n$ 为所有目标域样本数量。设置参与训练的价标签样本最大数量为 $40000$。

  通过构建仅在目标域样本上训练的特定于目标域的网络,将学习判别性表示。但是仅使用有噪声的伪标签样本训练,网络可能无法学习有用的表示。然后我们使用源域和伪标签样本训练三个分类器以保证准确率。同随着训练, $F$  将学习目标域判别性表示,使分类器 $F_{1}$, $F_{2}$  的正确率提升。这个周期逐渐增强目标域上的准确率。

[1] Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In ICML workshop on Challenges in Representation Learning, 2013.

迁移学习《Asymmetric Tri-training for Unsupervised Domain Adaptation》的更多相关文章

  1. 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》

    论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...

  2. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  5. 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》

    论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...

  6. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  7. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

  8. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  9. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

  10. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

随机推荐

  1. AI基本知识

    一.什么是flops 对flops有疑惑,首先得先捋清这个概念: FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为 ...

  2. edge 浏览器部分功能

    模拟打印情况的调试

  3. oracle导入dmp

    通过impdp导入 1.sqlplus       (连接oracle数据库) 2.输入用户名密码3.create user abc identified by 123456;   (创建用户名为ab ...

  4. getElementsByClassName()获取不到值

    在这种方式下,虽然使用了getElementsByClassName方法,但是并不能获得到值.从执行顺序上来说,在HTML还没有执行的时候JS就已经开始执行了,所以获得的值不能够获得到.因此,如果遇到 ...

  5. CC2020 分享信息

    CC2020是鄙人第一次参与的国际计算教育报告.CC2020报告的特色是希望面向未来的教育能走近每一个教育的利益相关者,包括家长.学生.行业雇主.政府决策制定者和学术界人士.敬请各位从自己的身份角度对 ...

  6. sql server 连接 EXCEL 直接查询

    1  SQL SERVER 中 查看有无访问接口,以下其中任何一个即可. 没有则下载  Microsoft Access Database Engine 2016 Redistributable (M ...

  7. 多级路由,重定向之后,刷新页面报错问题:报错Unexpected token '<'

    使用脚手架:vue-cli3.0vue版本:vue3.0vue-router版本:vue-router4.0 配置多级路由,首次访问,到重定向页面没有问题,然后在当前页面刷新控制台报错:Unexpec ...

  8. SQL Server触发器备份后还原

    测试环境SQL Server 2012 select a.definition , b.name,b.is_disabled from sys.sql_modules a inner join sys ...

  9. StatefulSet 模板,更新,扩缩容,删除

    概念: StatefulSet是用来管理有状态应用的工作负载API对象,kubectl 中可以简写sts ,sts每一个pod生成一个唯一的标识符,sts_name-number,number从0开始 ...

  10. CH573 CH582 CH579外设ADC例程讲解

    在adc的例程中共有六种AD测量,1.温度测量,2.单通道测量,3.DMA单通道测量,4.差分通道测量,5.触摸按键测量,6.中断方式单通道测量,接下来我们逐一描述. 粗调:粗调使得用0db测量VIN ...