三维偏序[cdq分治学习笔记]
就是让第一维有序 然后归并+树状数组求两维
cdq+cdq不会 告辞
#include <bits/stdc++.h>
// #define int long long
#define rep(a , b , c) for(int a = b ; a <= c ; ++ a)
#define Rep(a , b , c) for(int a = b ; a >= c ; -- a)
#define go(u) for(int i = G.head[u] , v = G.to[i] , w = G.dis[i] ; i ; v = G.to[i = G.nxt[i]] , w = G.dis[i])
using namespace std ;
using ll = long long ;
using pii = pair < int , int > ;
using vi = vector < int > ;
int read() {
int x = 0 ; bool f = 1 ; char c = getchar() ;
while(c < 48 || c > 57) { if(c == '-') f = 0 ; c = getchar() ; }
while(c > 47 && c < 58) { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return f ? x : -x ;
}
template <class T> void print(T x , char c = '\n') {
static char st[100] ; int stp = 0 ;
if(! x) { putchar('0') ; }
if(x < 0) { x = -x ; putchar('-') ; }
while(x) { st[++ stp] = x % 10 ^ 48 ; x /= 10 ; }
while(stp) { putchar(st[stp --]) ; } putchar(c) ;
}
template <class T> void cmax(T & x , T y) { x < y ? x = y : 0 ; }
template <class T> void cmin(T & x , T y) { x > y ? x = y : 0 ; }
const int _N = 1e6 + 10 ;
struct Group {
int head[_N] , nxt[_N << 1] , to[_N] , dis[_N] , cnt = 1 ;
Group () { memset(head , 0 , sizeof(head)) ; }
void add(int u , int v , int w = 1) { nxt[++ cnt] = head[u] ; to[cnt] = v ; dis[cnt] = w ; head[u] = cnt ; }
} ;
const int N = 1e5 + 10 ;
typedef int arr[N] ;
int n , k ;
struct Node {
int x , y , z , ans , cnt ;
Node() {}
bool operator < (const Node & other) const {
if(x != other.x) return x < other.x ;
if(y != other.y) return y < other.y ;
return z < other.z ;
}
bool operator == (const Node & other) const {
return (x == other.x) && (y == other.y) && (z == other.z) ;
}
} a[N] , b[N] , tmp[N] ;
struct BIT {
int c[N << 1] , mxk ;
int low(int x) {
return x & - x ;
}
void add(int x , int y) {
if(! x) return ;
for( ; x <= mxk ; x += low(x)) c[x] += y ;
}
int query(int x) {
int ans = 0 ;
for( ; x ; x ^= low(x)) ans += c[x] ;
return ans ;
}
} t ;
bool cmp(Node x , Node y) {
if(x.y != y.y) return x.y < y.y ;
if(x.z != y.z) return x.z < y.z ;
}
void solve(int l , int r){
// printf("%d -> %d\n" , l , r) ;
if(l == r) return ;
int mid = l + r >> 1 ;
solve(l , mid) ; solve(mid + 1 , r) ;
int p = l ; rep(i , mid + 1 , r) {
for( ; b[p].y <= b[i].y && p <= mid ; ++ p) t.add(b[p].z , b[p].cnt) ;
b[i].ans += t.query(b[i].z) ;
}
rep(i , l , p - 1) t.add(b[i].z , -b[i].cnt) ;
merge(b + l , b + mid + 1 , b + mid + 1 , b + r + 1 , tmp , cmp) ;
rep(i , l , r) b[i] = tmp[i - l] ;
// printf("%d -> %d\n" , l , r) ;
}
int ans[N] ;
signed main() {
n = read() ; t.mxk = k = read() ;
rep(i , 1 , n) { a[i].x = read() ; a[i].y = read() ; a[i].z = read() ; }
sort(a + 1 , a + n + 1) ; rep(i , 1 , n) b[i] = a[i] ;
int len = unique(b + 1 , b + n + 1) - b - 1 ; int tp = 1 ;
rep(i , 1 , n) if(a[i] == b[tp]) ++ b[tp].cnt ; else ++ b[++ tp].cnt ;
solve(1 , len) ;
rep(i , 1 , len) { ans[b[i].ans + b[i].cnt - 1] += b[i].cnt ; }
rep(i , 0 , n - 1) print(ans[i]) ;
return 0 ;
}
先咕着
三维偏序[cdq分治学习笔记]的更多相关文章
- Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治
Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...
- CDQ分治学习笔记(三维偏序题解)
首先肯定是要膜拜CDQ大佬的. 题目背景 这是一道模板题 可以使用bitset,CDQ分治,K-DTree等方式解决. 题目描述 有 nn 个元素,第 ii 个元素有 a_iai.b_ibi.c_ ...
- 初学cdq分治学习笔记(可能有第二次的学习笔记)
前言骚话 本人蒟蒻,一开始看到模板题就非常的懵逼,链接,学到后面就越来越清楚了. 吐槽,cdq,超短裙分治....(尴尬) 正片开始 思想 和普通的分治,还是分而治之,但是有一点不一样的是一般的分治在 ...
- CDQ分治学习笔记
数据结构中的一块内容:$CDQ$分治算法. $CDQ$显然是一个人的名字,陈丹琪(NOI2008金牌女选手) 这种离线分治算法被算法界称为"cdq分治" 我们知道,一个动态的问题一 ...
- bzoj3262: 陌上花开 三维偏序cdq分治
三维偏序裸题,cdq分治时,左侧的x一定比右侧x小,然后分别按y排序,对于左侧元素按y大小把z依次插入到树状数组里,其中维护每个左侧元素对右侧元素的贡献,在bit查询即可 /************* ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- BZOJ3262 陌上花开 —— 三维偏序 CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3262 3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit ...
- BZOJ 3295:[Cqoi2011]动态逆序对(三维偏序 CDQ分治+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 题意:简单明了. 思路:终于好像有点明白CDQ分治处理三维偏序了.把删除操作看作是插入操作,那 ...
- [摸鱼]cdq分治 && 学习笔记
待我玩会游戏整理下思绪(分明是想摸鱼 cdq分治是一种用于降维和处理对不同子区间有贡献的离线分治算法 对于常见的操作查询题目而言,时间总是有序的,而cdq分治则是耗费\(O(logq)\)的代价使动态 ...
随机推荐
- springboot打印sql语句及执行时间
有时候我们程序的接口比较耗时,需要优化,这时我们可能需要了解该接口执行了哪些sql语句以及耗时 1.引入jar包 <!--监控sql日志--> <dependency> < ...
- 【WPF学习】第三十八章 行为
样式提供了重用一组属性设置的实用方法.它们为帮助构建一致的.组织良好的界面迈出了重要的第一步——但是它们也是有许多限制. 问题是在典型的应用程序中,属性设置仅是用户界面基础结构的一小部分.甚至最基本的 ...
- 套接字名与DNS
2 现代地址解析 首先要说Python套接字最强大的工具之一-------getaddrinfo() 这个函数可能是我们用来将用户指定的主机名和端口号转换为可供套接字方法使用的地址时所需的唯一方法. ...
- caffe 指定GPU
caffe默认使用编号为0的gpu, 若它的内存不够或正忙, 即使有其余gpu空闲, caffe也不会使用. 要用哪个gpu, 就要明确指定哪个. 不指定则使用默认. 命令行 ./build/tool ...
- Luogu P1330 封锁阳光大学 (黑白染色)
题意: 无向图,给一个顶点染色可以让他相邻的路不能通过,但是相邻顶点不能染色,求是否可以让所有的路不通,如果可以求最小染色数. 思路: 对于无向图中的每一个连通子图,都只有两种染色方法,或者染不了,直 ...
- C# 把带有父子关系的数据转化为------树形结构的数据 ,以及 找出父子级关系的数据中里面的根数据Id
紧接上一篇,将List<Menu>的扁平结构数据, 转换成树形结构的数据 返回给前端 , 废话不多说,开撸! --------------------- 步骤: 1. 建 Menu ...
- TTStand 基础知识[8] Build-In StepTypes(3)
Build-In Step Types的最后一篇,前面两篇的连接如下: TestStand 基础知识[7] Build-In StepTypes(2) TestStand 基础知识[6] Build- ...
- 《C# GDI+ 破境之道》:第一境 GDI+基础 —— 第二节:画矩形
有了上一节画线的基础,画矩形的各种边线就特别好理解了,所以,本节在矩形边线上,就不做过多的讲解了,关注一下画“随机矩形”的具体实现就好.与画线相比较,画矩形稍微复杂的一点就是在于它多了很多填充的样式. ...
- BurpSuite--代理和浏览器设置
上一篇文章我们完成了JAVA环境的搭建和burpsuite的安装,接下来请大家和我一起一步一步的完成burpsuite的代理和浏览器的相关设置. 关注“白帽技术与网络安全”获取安装包 1.设置浏览器代 ...
- [Effective Java 读书笔记] 第二章 创建和销毁对象 第三 四条
第三条 用私有构造器或者枚举类型强化singleton属性 singleton指只能被实例化一次的类,即将构造器设置为私有,使用公有静态成员来实例化,且只实例化一次对象 第四条 通过私有构造器强化不可 ...