题意

我理解的动态DP:

发现DP可以写成矩阵的形式,因此用数据结构维护矩阵乘积。

对于这道题,显然有DP:

\(f_{x,0/1}\)表示\(x\)的子树中,x选/不选的最大点独立集。

\(f_{x,0}=\sum\limits_{y\in son_x}\max(f_{y,0},f_{y,1}),f_{x,1}=\sum\limits_{y\in sno_x}f_{y,0}+a_x\)

既然在树上,就用树剖或者LCT解决,本质都是将树拆成链,这里用树剖。

设\(son_x\)表示\(x\)的重儿子,\(g_{x,0/1}\)表示除去\(son_x\)后的\(f_{x,0}\)的值。

有:

\(f_{x,0}=g_{x,0}+\max(f_{son_x,0},f_{son_x,1}),f_{x,1}=g_{x,1}+f_{son_x,0}\),注意\(g_{x,1}\)初值为\(a_x\)。

DP写成矩阵的形式:

\(\begin{bmatrix}g_{x,0}&g_{x,0}\\g_{x,1}& 0\end{bmatrix}\begin{bmatrix}f_{y,0}\\ f_{y,1}\end{bmatrix}=\begin{bmatrix}f_{x,0}\\ f_{x,1}\end{bmatrix}\)

注意这里的矩乘长这样:

Mat operator*(Mat a,Mat b)
{
Mat res;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
res[i][j]=max(res[i][j],a[i][k]+b[k][j]);
return res;
}

之后就正常树剖修改查询即可

code:

#include<bits/stdc++.h>
using namespace std;
#define ls(p) (p<<1)
#define rs(p) (p<<1|1)
const int maxn=1e5+10;
int n,m,cnt,tim;
int head[maxn],a[maxn],size[maxn],pre[maxn],dep[maxn],son[maxn],dfn[maxn],pos[maxn],top[maxn],ed[maxn];
int f[maxn][2];
struct edge{int to,nxt;}e[maxn<<1];
struct Mat
{
int a[5][5];
Mat(){memset(a,-0x3f,sizeof(a));}
int* operator[](int i){return a[i];}
}val[maxn],seg[maxn<<2];
Mat operator*(Mat a,Mat b)
{
Mat res;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
res[i][j]=max(res[i][j],a[i][k]+b[k][j]);
return res;
}
inline void add(int u,int v)
{
e[++cnt].nxt=head[u];
head[u]=cnt;
e[cnt].to=v;
}
void dfs1(int x,int fa)
{
dep[x]=dep[fa]+1;pre[x]=fa;size[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==fa)continue;
dfs1(y,x);size[x]+=size[y];
if(size[son[x]]<size[y])son[x]=y;
}
}
void dfs2(int x,int tp)
{
dfn[x]=++tim;pos[tim]=x;top[x]=tp;ed[tp]=max(ed[tp],tim);
f[x][0]=0,f[x][1]=a[x];
val[x][1][1]=val[x][1][2]=0;
val[x][2][1]=a[x];
if(son[x])
{
dfs2(son[x],tp);
f[x][0]+=max(f[son[x]][0],f[son[x]][1]);
f[x][1]+=f[son[x]][0];
}
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==pre[x]||y==son[x])continue;
dfs2(y,y);
f[x][0]+=max(f[y][0],f[y][1]);
f[x][1]+=f[y][0];
val[x][1][1]+=max(f[y][0],f[y][1]);
val[x][1][2]=val[x][1][1];
val[x][2][1]+=f[y][0];
}
}
inline void up(int p){seg[p]=seg[ls(p)]*seg[rs(p)];}
void build(int p,int l,int r)
{
if(l==r){seg[p]=val[pos[l]];return;}
int mid=(l+r)>>1;
build(ls(p),l,mid);build(rs(p),mid+1,r);
up(p);
}
void change(int p,int l,int r,int k)
{
if(l==r){seg[p]=val[pos[k]];return;}
int mid=(l+r)>>1;
if(k<=mid)change(ls(p),l,mid,k);
else change(rs(p),mid+1,r,k);
up(p);
}
Mat query(int p,int l,int r,int ql,int qr)
{
if(l>=ql&&r<=qr)return seg[p];
int mid=(l+r)>>1;
if(qr<=mid)return query(ls(p),l,mid,ql,qr);
else if(ql>mid)return query(rs(p),mid+1,r,ql,qr);
else return query(ls(p),l,mid,ql,qr)*query(rs(p),mid+1,r,ql,qr);
}
inline void trchange(int x,int k)
{
val[x][2][1]+=k-a[x];
a[x]=k;
Mat tmp1,tmp2;
while(x)
{
tmp1=query(1,1,n,dfn[top[x]],ed[top[x]]);
change(1,1,n,dfn[x]);
tmp2=query(1,1,n,dfn[top[x]],ed[top[x]]);
x=pre[top[x]];
val[x][1][1]+=max(tmp2[1][1],tmp2[2][1])-max(tmp1[1][1],tmp1[2][1]);
val[x][1][2]=val[x][1][1];
val[x][2][1]+=tmp2[1][1]-tmp1[1][1];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<n;i++)
{
int u,v;scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs1(1,0);dfs2(1,1);
build(1,1,n);
for(int i=1;i<=m;i++)
{
int x,y;scanf("%d%d",&x,&y);
trchange(x,y);
a[x]=y;
Mat res=query(1,1,n,dfn[1],ed[1]);
printf("%d\n",max(res[1][1],res[2][1]));
}
return 0;
}

luoguP4719 【模板】动态 DP的更多相关文章

  1. [模板] 动态dp

    用途 对于某些树形dp(目前只会树上最大权独立集或者类似的),动态地修改点权,并询问修改后的dp值 做法(树剖版) 以最大权独立集为例 设$f[x][0/1]$表示x选不选,这棵子树的最大权独立集大小 ...

  2. [luogu 4719][模板]动态dp

    传送门 Solution \(f_{i,0}\) 表示以i节点为根的子树内,不选i号节点的最大独立集 \(f_{i,1}\)表示以i节点为根的子树内,选i号节点的最大独立集 \(g_{i,0}\) 表 ...

  3. luoguP4719 【模板】动态 DP 线段树+树链剖分+矩阵乘法+动态DP

    题目描述 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y,表示修改点x的权值为y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,n,m分 ...

  4. LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】

    题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...

  5. 洛谷P4719 【模板】"动态 DP"&动态树分治

    [模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...

  6. Luogu P4643 【模板】动态dp

    题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...

  7. 洛谷P4719 【模板】动态dp(ddp LCT)

    题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using ...

  8. 【洛谷】P4643 【模板】动态dp

    题解 在冬令营上听到冬眠的东西,现在都是板子了猫锟真的是好毒瘤啊(雾) (立个flag,我去thusc之前要把WC2018T1乱搞过去= =) 好的,我们可以参考猫锟的动态动态dp的课件,然后你发现你 ...

  9. 「LGP4719【模板】动态dp」

    题目 尽管知道这个东西应该不会考了,但是还是学一学吧 哎要是去年noip之前学该多好 动态\(dp\)就是允许修改的一个\(dp\),比如这道题,我们都知道这是一个树上最大点权独立集 众所周知方程长这 ...

随机推荐

  1. [C5W3] Sequence Models - Sequence models & Attention mechanism

    第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...

  2. CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)

    神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...

  3. 使用Runtime自定义KVO,原理浅析

    一.介绍 什么是KVO?全称key-value-observer,键值观察,观察者设计模式的另一种实现.其作用是通过观察者监听属性值的变化而做出函数回调. 二.原理 KVO基于Runtime机制实现, ...

  4. oracle学习笔记(十三) 查询练习(三) 子查询查询

    子查询练习 create table empployee_demo( empno number(4) not null primary key, --员工编号,主键 ename varchar2(10 ...

  5. Linux网络——配置网络之ifconfig家族命令

    Linux网络——配置网络之ifconfig家族命令 摘要:本文主要学习了ifconfig家族用来配置网络的命令. ifconfig命令 ifconfig命令用来显示或设置网络接口信息,设置只是临时生 ...

  6. Asp.net MVC 中的TempData对象的剖析

    另一篇文章,也对TempData 做了很详细的介绍,链接地址:https://www.jianshu.com/p/eb7a301bc536   . MVC中的 TempData 可以在Controll ...

  7. FCC---Create a More Complex Shape Using CSS and HTML---一个粉色爱心

    One of the most popular shapes in the world is the heart shape, and in this challenge you'll create ...

  8. 定时器每隔10秒钟刷新一次jqgrid

    //console.log('每隔*秒钟刷新一次'); var timer = window.setInterval(function() { $("#table_list_1") ...

  9. IOS疯狂基础之模态显示PresentModalViewController(转)

    转自:http://blog.csdn.net/wudizhukk/article/details/8553554 -(void)buttonDown:(id)sender{ ViewTwo *two ...

  10. Android框架Volley使用:Json请求实现

    首先我们在项目中导入这个框架: implementation 'com.mcxiaoke.volley:library:1.0.19' 在AndroidManifest文件当中添加网络权限: < ...