题目描述

有一棵带权树,求这些边组成的路径的最大异或和。

Solution

考场 SPFA 神奇 70 分代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<ctime> const int MAXN=100010;
using namespace std; struct node{
int x,y,d,next;
}e[MAXN+MAXN+10];
int len=0;
int first[MAXN+10];
int n;
int ans=0;
queue<int> q;
int f[MAXN+10];
int sx,sy,sd;
bool v[MAXN+10]; void ins(int x,int y,int d){
e[++len].x=x;e[len].y=y;e[len].d=d;
e[len].next=first[x];first[x]=len;
}
int max(int x,int y){
if(x>y) return x;
return y;
}
int work(int X){
if(clock()>950) return 0;
memset(f,0,sizeof(f));
while(!q.empty()) q.pop();
q.push(X);
while(!q.empty()){
int x=q.front();q.pop();v[x]=0;
for(int i=first[x];i;i=e[i].next){
int y=e[i].y;
if((f[y]<(f[x]^e[i].d))&&y!=X&&v[y]){
v[y]=0;
f[y]=(f[x]^e[i].d);
q.push(y);
}
}
v[x]=1;
}
int sum=0;
for(int i=1;i<=n;++i)
if(i!=X) sum=max(sum,f[i]);
return sum;
}
inline int read(){
int x=0; char c;
do c=getchar(); while(c<'0'||c>'9');
while(c>='0'&&c<='9')
x=x*10+c-48,c=getchar();
return x;
}
int main(){
freopen("xor.in","r",stdin);
freopen("xor.out","w",stdout);
n=read();
memset(first,0,sizeof(first));
memset(v,1,sizeof(v));
for(int i=1;i<n;++i){
sx=read();sy=read();sd=read();
ins(sx,sy,sd);ins(sy,sx,sd);
}
for(int i=1;i<=n;++i)
ans=max(ans,work(i));
printf("%d",ans);
}

你现在选出了一个点,你要在剩下的 n−1n-1n−1 个中找一个点使异或最大。

假设你第一位是 0,那你肯定想找个 1 对吧。这样一直做下去就是答案。于是我们想到了 trie 树。把根到每个点的距离做出来,加进 trie 树里面,然后做一次的复杂度就是 log⁡n\log nlogn 的,总的复杂度就是 O(nlog⁡n)O(n\log n)O(nlogn) 的。

#include<cstdio>
#include<cstdlib>
#include<cstring> #define reg register typedef long long ll; int n;
ll a[100010];
ll pow[35]={1};
struct node{
int x,fa,h,s[2];
}e[3300010];
int len=0;
ll ans=-1; ll max(ll x,ll y) {
return x>y?x:y;
}
inline ll read(){
ll x=0;char c;
do c=getchar(); while(c<'0'||c>'9');
while(c>='0'&&c<='9')
x=x*10+c-48,c=getchar();
return x;
}
void ins(ll x,int root){
if(e[root].h<=0) return;
ll yy=pow[e[root].h-1],xx=bool(x>=yy);
if(!e[root].s[xx]){
e[root].s[xx]=++len;
e[len].fa=root;e[len].h=e[root].h-1;e[len].x=xx;
}
ins(x-(xx?yy:0),e[root].s[xx]);
}
ll query(int x){
ll sum=0,tf=1;
for(reg int i=0;;){
if(!i&&!tf) break;
if(!i&&tf) tf=0;
if(pow[e[i].h-1]<=x){
x-=pow[e[i].h-1];
if(e[i].s[0]){
sum+=pow[e[i].h-1];
i=e[i].s[0];
continue;
}
else
i=e[i].s[1];
}
else{
if(e[i].s[1]){
sum+=pow[e[i].h-1];
i=e[i].s[1];
continue;
}
else
i=e[i].s[0];
}
}
return sum;
}
int main(){
memset(e,0,sizeof(e));
for(reg int i=1;i<=31;++i)
pow[i]=pow[i-1]*2l;
e[0].h=31;
scanf("%d",&n);
for(reg int i=1;i<=n;++i){
a[i]=read();
ins(a[i],0);
if(i!=1) ans=max(ans,query(a[i]));
}
printf("%lld",ans);
}

#10056. 「一本通 2.3 练习 5」The XOR-longest Path的更多相关文章

  1. 「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie

    题目描述 在给定的 $N$ 个整数 $A_1,A_2,A_3...A_n$ 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数$N$. 第二行$N$个整数$A_i$. 输出格式 ...

  2. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  3. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  4. LOJ#10117. 「一本通 4.1 练习 2」简单题

    LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...

  5. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  6. 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map

    题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...

  7. 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP

    题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...

  8. 「LOJ#10015」「一本通 1.2 练习 2」扩散(并查集

    题目描述 一个点每过一个单位时间就会向 444 个方向扩散一个距离,如图所示:两个点 a .b 连通,记作 e(a,b),当且仅当 a .b的扩散区域有公共部分.连通块的定义是块内的任意两个点 u.v ...

  9. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

随机推荐

  1. Dubbo 与 Spring Cloud 完美结合

    Dubbo 与 Spring Cloud 完美结合 1. 概述 可能说起来Dubbo,很多人都不陌生,这毕竟是一款从2012年就开始开源的Java RPC框架,中间由于各种各样的原因停止更新4年半的时 ...

  2. Linux 笔记 - 第十九章 配置 Squid 正向代理和反向代理服务

    一.简介 Squid 是一个高性能的代理缓存服务器,对应中文的乌贼,鱿鱼的意思.Squid 支持 FTP,gopher 和 HTTP 协议.和一般的代理缓存软件不同,Squid 用一个单独的,非模块化 ...

  3. 手把手教你使用Java实现一个神经网络

    首先看一下运行效果: 下面是项目整体目录: 0.实现神经网络总览 神经网络由层.神经元.权重.激活函数和偏置组成.每层都有一个或者多个神经元,每一个神经元都和神经输入/输出连接,这些连接就是权重. 需 ...

  4. 初学者-asp.net三层架构

    一.概述: 通常意义上的三层架构就是将整个业务应用划分为:表现层(UI).业务逻辑层(BLL).数据访问层(DAL).区分层次的目的即为了“高内聚,低耦合”的思想.是一种总体设计的思想. 1.表现层( ...

  5. 品Spring:能工巧匠们对注解的“加持”

    问题的描述与方案的提出 在Spring从XML转向注解时,为了自身的开发方便,对注解含义进行了扩充(具体参考本号上一篇文章). 这个扩充直接导致了一个问题,就是需要从注解往元注解以及元元注解(即沿着从 ...

  6. Python学习笔记整理总结【Django】:Form组件

     Form组件  Django的Form主要具有一下几大功能: --生成HTML标签 --验证用户数据(显示错误信息) --HTML Form提交保留上次提交数据 --初始化页面显示内容 1.内置字段 ...

  7. js初学总结

    基础 交换变量方式 //利用第三方变量进行交换 var num1 = 10; var num2 = 20; var temp; temp = num1; num1 = num2; num2 = tem ...

  8. Save&Load--Unity存档读档的学习总结

    存档与读档功能 举例: 传统RPG游戏(仙剑.空之轨迹): 1.角色信息(生命值,等级) 2.道具信息(装备,药品) 3.场景信息(场景名称.角色坐标) 4.事件信息(任务相关) 关卡类游戏:关卡的通 ...

  9. windows下配置多个tomcat步骤

    步骤如下: 1.使用压缩版的tomcat不能使用安装版的.2.第一个tomcat的配置不变.3.增加环境变量CATALINA_HOME2,值为新的tomcat的地址:增加环境变量CATALINA_BA ...

  10. Redis-->windows上的安装教程

    Windows下安装Redis服务 说明:本文拷贝自http://www.cnblogs.com/jaign/articles/7920588.html Redis是有名的NoSql数据库,一般Lin ...