什么是Pick定理(皮克定理)

来自wiki的介绍:

给定顶点座标均是整点(或正方形格子点)的简单多边形,皮克定理说明了其面积 \(A\)和内部格点数目 \(i\) 、边上格点数目 \(b\) 的关系:\(A = i + \frac b 2 - 1\)。

因为所有简单多边形都可切割为一个三角形和另一个简单多边形。考虑一个简单多边形 \(P\),及跟\(P\)有一条共同边的三角形\(T\)。若\(P\) 符合皮克公式,则只要证明\(P\)加上\(T\) 的\(PT\)亦符合皮克公式(I),与及三角形符合皮克公式(II),就可根据数学归纳法,对于所有简单多边形皮克公式都是成立的。

详细证明:Click Here

Pick定理有以下推广:

  • 取格点的组成图形的面积为一单位。在平行四边形格点,皮克定理依然成立。套用于任意三角形格点,皮克定理则是 \({\displaystyle A=2 \times i+b-2}\) 。
  • 对于非简单的多边形 \({\displaystyle P}\) ,皮克定理 \({\displaystyle A=i+{\frac {b}{2}}-\chi (P)}\) ,其中 \({\displaystyle \chi (P)}\) 表示 \({\displaystyle P}\) 的 欧拉特征数
  • 高维推广:Ehrhart 多项式
  • 皮克定理和 欧拉公式 ( \({\displaystyle V-E+F=2}\) )等价。

一道例题 (POJ 1265)

题目大意

给一个平面上的简单多边形,求边上的点,多边形内的点,多边形面积。

Solution

这道题目其实用了以下三个知识:

  • 以格子点为顶点的线段,覆盖的点的个数为 \(\gcd(dx,dy)\) ,其中, \(dx,dy\) 分别为线段横向占的点数和纵向占的点数。如果 \(dx\) 或 \(dy\) 为 \(0\) ,则覆盖的点数为 \(dy\) \(dx\) 。
  • Pick 定理:平面上以格子点为顶点的简单多边形的面积 = 边上的点数/2 + 内部的点数 - 1。
  • 任意一个多边形的面积等于按顺序求相邻两个点与原点组成的向量的叉积之和(这个也可以通过顺时针定积分求得)。

于是这题就愉快地做完了

// Author : RioTian
// Time : 20/10/21
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
typedef long long ll;
const int N = 100 + 10;
struct node {
int x, y;
} p[N];
inline int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
inline int area(int a, int b) { return p[a].x * p[b].y - p[a].y * p[b].x; }
int main() {
// freopen("in.txt", "r", stdin);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int t, ncase = 1;
cin >> t;
while (t--) {
int n, dx, dy, x, y, num = 0, sum = 0;
cin >> n;
p[0].x = p[0].y = 0;
for (int i = 1; i <= n; ++i) {
cin >> x >> y;
p[i].x = x + p[i - 1].x, p[i].y = y + p[i - 1].y;
dx = x, dy = y;
if (x < 0) dx = -x;
if (y < 0) dy = -y;
num += gcd(dx, dy);
sum += area(i - 1, i);
}
if (sum < 0) sum = -sum;
if (sum < 0) sum = -sum;
printf("Scenario #%d:\n", ncase++);
printf("%d %d %.1f\n\n", (sum - num + 2) >> 1, num, sum * 0.5);
}
}

【计算几何 05】Pick定理的更多相关文章

  1. Luogu P2735 电网【真·计算几何/Pick定理】By cellur925

    题目传送门 刷USACO偶然遇到的,可能是人生中第一道正儿八经的计算几何. 题目大意:在平面直角坐标系中给你一个以格点为顶点的三角形,求三角形中的整点个数. 因为必修5和必修2的阴影很快就想到了数学中 ...

  2. HDU 3775 Chain Code ——(Pick定理)

    Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...

  3. 【POJ】2954 Triangle(pick定理)

    http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...

  4. UVa 10088 - Trees on My Island (pick定理)

    样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...

  5. Area(Pick定理POJ1256)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5429   Accepted: 2436 Description ...

  6. poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  7. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  8. poj1265Area(pick定理)

    链接  Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...

  9. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

随机推荐

  1. php中用面向对象的思想编写mysql数据库操作类

    最近刚入门完mysql,正好学了一阵子php就想着如何把mysql的表信息用php打印页面上.现在就把代码贴出来,以便小伙伴们参考. 先是建立mysql连接: /*建立连接*/ class datab ...

  2. Java基础一篇过(六)Java8--lambda表达式

    一.简介 lambda表达式是Java8的一个重要特性,也可以称为闭包,常用于配合Java8的Stream对集合元素进行操作,使得代码更简介紧凑. 二.代码解析 虽说lambda表达式是一个新的特性, ...

  3. OpenCV图像处理学习笔记-Day4(完结)

    OpenCV图像处理学习笔记-Day4(完结) 第41课:使用OpenCV统计直方图 第42课:绘制OpenCV统计直方图 pass 第43课:使用掩膜的直方图 第44课:掩膜原理及演示 第45课:直 ...

  4. 删除链表的倒数第N个节点(头部加一个哑结点)

    我的代码:测试用例[1,2]2,  时会报错,无法不能删除第一个指针 /** * Definition for singly-linked list. * public class ListNode ...

  5. 剑指offer-字符串&数字规律

    1. 表示数值的字符串 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2","-123",&q ...

  6. 手把手撸套框架-Victory框架1.0 详解

    目录 其实Victory框架1.0 在8月份就完成了,整个9月份都没有更新博客,主要还是因为松懈了. 所以,趁着国庆节的放假的时间把博客给更新一下,1.0总的来说算不得一个成熟的产品,但是拿来开发我们 ...

  7. Shiro入门学习---使用自定义Realm完成认证|练气中期

    写在前面 在上一篇文章<shiro认证流程源码分析--练气初期>当中,我们简单分析了一下shiro的认证流程.不难发现,如果我们需要使用其他数据源的信息完成认证操作,我们需要自定义Real ...

  8. 024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符

    024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符 本文知识点:Java中的关系运算符 关系运算符

  9. 018 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 12 数据类型转换的基本概念

    018 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 12 数据类型转换的基本概念 本文知识点:Java中的数据类型转换 类型转换 类型转换分类 2类,分别是: ...

  10. 2. 在TCGA中找到并下载意向数据

    听说过别人用生信分析"空手套白狼"的故事吧想做吗好想学哦~ 或多或少都知道GEO和TCGA这些公共数据库吧!那么你知道怎么在数据库上找到意向数据,并且成功下载呢?这第一步要难倒一大 ...