POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269
Problem Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
Solution
题意
\(n\) 组样例。每组样例给定两条直线,判断直线是平行,重合还是相交。若相交求交点。
题解
叉积
- 判断共线:
若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 共线,则 \(\boldsymbol{ab} \times \boldsymbol{cd} = 0\)。
- 判断重合:
若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 重合,则 \(\boldsymbol{bc} \times \boldsymbol{ad} = 0\)。
- 判断平行:
共线且不重合。
- 求交点:
首先要满足相交。
如上图,求 \(\boldsymbol{AB}\) 与 \(\boldsymbol{CD}\) 的交点 \(E\)。
\]
\]
设原点为 \(O\),则
\]
\(\boldsymbol{OE}\) 即为点 \(E\) 的坐标。
Code
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
typedef Point Vector;
class Line {
public:
Point s, e;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
void input() {
scanf("%lf%lf%lf%lf", &s.x, &s.y, &e.x, &e.y);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
// 共线
bool collinear(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
return 1;
}
return 0;
}
// 同线
bool same(Line l) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 1;
}
return 0;
}
// 平行
bool parallel(Line l) {
return collinear(l) && (!same(l));
}
// 直线与直线交点
Point crosspoint(Line l) {
double a1 = (l.e - l.s).cross(s - l.s);
double a2 = (l.e - l.s).cross(e - l.s);
Point ans = s + (e - s) * (-a1) / (a2 - a1);
if(dcmp(ans.x) == 0) ans.x = 0;
if(dcmp(ans.y) == 0) ans.y = 0;
return ans;
}
// 直线与直线位置关系 0-重合 1-平行 2-相交
int linecrossline (Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
};
Line l1, l2;
int main() {
int T;
scanf("%d", &T);
printf("INTERSECTING LINES OUTPUT\n");
while(T--) {
l1.input();
l2.input();
if(l1.linecrossline(l2) == 0) {
printf("LINE\n");
} else if(l1.linecrossline(l2) == 1) {
printf("NONE\n");
} else {
Point ans = l1.crosspoint(l2);
printf("POINT %.2lf %.2lf\n", ans.x, ans.y);
}
}
printf("END OF OUTPUT\n");
return 0;
}
POJ 1269 Intersecting Lines (判断直线位置关系)的更多相关文章
- POJ 1269 Intersecting Lines(直线相交判断,求交点)
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8342 Accepted: 378 ...
- poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12421 Accepted: 55 ...
- POJ 1269 Intersecting Lines(直线求交点)
Description We all know that a pair of distinct points on a plane defines a line and that a pair of ...
- POJ 1269 Intersecting Lines 判断两直线关系
用的是初中学的方法 #include <iostream> #include <cstdio> #include <cstring> #include <al ...
- POJ 1269 Intersecting Lines(判断两直线位置关系)
题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- 简单几何(直线位置) POJ 1269 Intersecting Lines
题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /********************* ...
- POJ 1269 Intersecting Lines【判断直线相交】
题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...
- POJ 1269 - Intersecting Lines 直线与直线相交
题意: 判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...
随机推荐
- Centos7安装部署SonarQube7.9.1教程
0.参考文档 LTS 7.9.1 新特性:https://www.sonarqube.org/sonarqube-7-9-lts/ JDK11 下载地址: 链接:https://pan.baidu.c ...
- python3迷宫,多线程版
上图: 直接上代码 #!/usr/bin/python3 #coding=GB2312 import tkinter as tk import threading import time import ...
- day 53-1 Django基础三之视图函数
Django基础三之视图函数 本节目录 一 Django的视图函数view 二 CBV和FBV 三 使用Mixin 四 给视图加装饰器 五 Request对象 六 Response对象 一 Dja ...
- SSO 实现博客系统的单点登录
https://blog.csdn.net/qq1350048638/article/details/78933375 https://blog.csdn.net/yejingtao703/artic ...
- 洛谷 P2024 [NOI2001]食物链——带权值的并查集维护
先上一波题目 https://www.luogu.org/problem/P2024 通过这道题复习了一波并查集,学习了一波带权值操作 首先我们观察到 所有的环都是以A->B->C-> ...
- 如何深入理解Java泛型
一.泛型的作用与定义 1.1泛型的作用 使用泛型能写出更加灵活通用的代码泛型的设计主要参照了C++的模板,旨在能让人写出更加通用化,更加灵活的代码.模板/泛型代码,就好像做雕塑时的模板,有了模板,需要 ...
- linux/unix下setuid/seteuid/setreuid/setresuid
其中setresuid()具有最清晰的语法: setresuid()被执行的条件有: ①当前进程的euid是root ②三个参数,每一个等于原来某个id中的一个 如果满足以上条件的任意一个,setre ...
- Spring学习笔记(4)——IoC学习
IoC理论的背景我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图1:软件系统中耦合的对象 如果我们打开机械式手表 ...
- css图片文字
1.浏览器是把 html 和 css 一起下载并执行的,计算机里把两件事情同时做 异步加载.计算机中的同步异步和我们生活中的正好是相反的. 补充: 同步,是所有的操作都做完,才返回给用户结果.即写完 ...
- 在egg中配置 sequelize
如何在eggjs中引入 sequlize 安装 第一步,在项目中安装 egg-sequelize插件和mysql插件 npm install --save egg-sequelize mysql2 第 ...