题目链接:POJ 1269

Problem Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.

Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Solution

题意

\(n\) 组样例。每组样例给定两条直线,判断直线是平行,重合还是相交。若相交求交点。

题解

叉积

  • 判断共线:

若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 共线,则 \(\boldsymbol{ab} \times \boldsymbol{cd} = 0\)。

  • 判断重合:

若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 重合,则 \(\boldsymbol{bc} \times \boldsymbol{ad} = 0\)。

  • 判断平行:

共线且不重合。

  • 求交点:

首先要满足相交。

如上图,求 \(\boldsymbol{AB}\) 与 \(\boldsymbol{CD}\) 的交点 \(E\)。

\[\frac{AE}{BE} = \frac{S_{\triangle ACD}}{S_{\triangle BCD}} = \frac{|\boldsymbol{CA} \times \boldsymbol{CD}|}{|\boldsymbol{CB} \times \boldsymbol{CD}|}
\]

\[\boldsymbol{AE} = \frac{|\boldsymbol{AE}|}{|\boldsymbol{AB}|} \boldsymbol{AB} = \frac{|\boldsymbol{AE}|}{|\boldsymbol{AE}| + |\boldsymbol{EB}|} \boldsymbol{AB} = \frac{S_{\triangle ACD}}{S_{\triangle ACD} + S_{\triangle BCD}} \boldsymbol{AB}
\]

设原点为 \(O\),则

\[\boldsymbol{OE} = \boldsymbol{OA} + \boldsymbol{AE}
\]

\(\boldsymbol{OE}\) 即为点 \(E\) 的坐标。

Code

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
} db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
typedef Point Vector; class Line {
public:
Point s, e;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
void input() {
scanf("%lf%lf%lf%lf", &s.x, &s.y, &e.x, &e.y);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
// 共线
bool collinear(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
return 1;
}
return 0;
}
// 同线
bool same(Line l) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 1;
}
return 0;
}
// 平行
bool parallel(Line l) {
return collinear(l) && (!same(l));
}
// 直线与直线交点
Point crosspoint(Line l) {
double a1 = (l.e - l.s).cross(s - l.s);
double a2 = (l.e - l.s).cross(e - l.s);
Point ans = s + (e - s) * (-a1) / (a2 - a1);
if(dcmp(ans.x) == 0) ans.x = 0;
if(dcmp(ans.y) == 0) ans.y = 0;
return ans;
} // 直线与直线位置关系 0-重合 1-平行 2-相交
int linecrossline (Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
}; Line l1, l2; int main() {
int T;
scanf("%d", &T);
printf("INTERSECTING LINES OUTPUT\n");
while(T--) {
l1.input();
l2.input();
if(l1.linecrossline(l2) == 0) {
printf("LINE\n");
} else if(l1.linecrossline(l2) == 1) {
printf("NONE\n");
} else {
Point ans = l1.crosspoint(l2);
printf("POINT %.2lf %.2lf\n", ans.x, ans.y);
}
}
printf("END OF OUTPUT\n");
return 0;
}

POJ 1269 Intersecting Lines (判断直线位置关系)的更多相关文章

  1. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  2. poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 55 ...

  3. POJ 1269 Intersecting Lines(直线求交点)

    Description We all know that a pair of distinct points on a plane defines a line and that a pair of ...

  4. POJ 1269 Intersecting Lines 判断两直线关系

    用的是初中学的方法 #include <iostream> #include <cstdio> #include <cstring> #include <al ...

  5. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. 简单几何(直线位置) POJ 1269 Intersecting Lines

    题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /********************* ...

  8. POJ 1269 Intersecting Lines【判断直线相交】

    题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...

  9. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

随机推荐

  1. 69、schema的相关方法

    public class SObjectSchema { public void testSchema(){ //获取SObject的token //1.先获取所有token,然后通过key获取需要的 ...

  2. Python机器学习及分析工具:Scikit-learn篇

    https://www.jianshu.com/p/e0844e7cdba5 https://sklearn.apachecn.org/docs/0.21.3/62.html 中文文档

  3. Python错误 importModuleNotFoundError: No module named 'Crypto'

    0x00经过 今天在python中导入模块的用     from Crypto.Cipher import AES 的时候出现了找不到模块的错误. 百度了很长时间有很多解决方法,但是因不同的环境不同的 ...

  4. Leetcode 跳跃游戏 II

    题目链接:https://leetcode-cn.com/problems/jump-game-ii/ 题目大意: 略. 分析: 贪心 + DP. 代码如下: class Solution { pub ...

  5. 轻松理解https,So easy!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 作者:翟志军 https://showme.codes/2017-02-20/understand-https/ 本文尝试一 ...

  6. Msys2编译Emacs

    Msys2编译Emacs */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #839496;} Msy ...

  7. centors7 和 win7 修改开机顺序

    打开/boot/grub2/grub.cfg,找到windows对应的项 我的是 Windows 7 (loader) (on /dev/sda1) 执行命令 grub2-set-default &q ...

  8. 晒订单赢图灵图书,《第一行代码——Android》福利活动劲爆来袭!

    版权声明:本文出自郭霖的博客,转载必须注明出处. https://blog.csdn.net/sinyu890807/article/details/28863515 (已结束) 我的著作<第一 ...

  9. cmd登录mysql、查所有的库、查所有的表、查表下的所有字段

    一.设置好mysql的环境变量,cmd之后输入mysql -u root  -p 输入password进入mysql 二.展示所有的库名show  batabases: 三.选择一个库名use dem ...

  10. MYSQL增量备份与恢复

    vim /etc/my.cnf在[mysqld]下添加max_binlog_size = 1024000 //二进制日志最大1M 要进行mysql的增量备份,首先要开启二进制日志功能方法一:在/etc ...