storm入门原理介绍
转自:http://www.cnblogs.com/wuxiang/p/5629138.html
1.hadoop有master与slave,Storm与之对应的节点是什么?
2.Storm控制节点上面运行一个后台程序被称之为什么?
3.Supervisor的作用是什么?
4.Topology与Worker之间的关系是什么?
5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?
6.storm稳定的原因是什么?
7.如何运行Topology?
strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
8.spout是什么?
9.bolt是什么?
10.Topology由两部分组成?
11.stream grouping有几种?
Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
Storm适用的场景:
1、流数据处理:Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。
2、分布式RPC:由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。
1、准备工作
2、一个Storm集群的基本组件
3、Topologies
- strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
复制代码
-based语言提交的最简单的方法, 看一下文章: 在生产集群上运行topology去看看怎么启动以及停止topologies。
4、Stream
5、数据模型(Data Model)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
publicclassDoubleAndTripleBoltimplementsIRichBolt { privateOutputCollectorBase _collector; @Override publicvoidprepare(Map conf, TopologyContext context, OutputCollectorBase collector) { _collector = collector; } @Override publicvoidexecute(Tuple input) { intval = input.getInteger(0); _collector.emit(input,newValues(val*2, val*3)); _collector.ack(input); } @Override publicvoidcleanup() { } @Override publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields("double","triple")); }} |
|
1
2
3
4
5
6
|
TopologyBuilder builder =newTopologyBuilder();builder.setSpout(1,newTestWordSpout(),10);builder.setBolt(2,newExclamationBolt(),3) .shuffleGrouping(1);builder.setBolt(3,newExclamationBolt(),2) .shuffleGrouping(2); |
|
1
2
3
|
builder.setBolt(3,newExclamationBolt(),5) .shuffleGrouping(1) .shuffleGrouping(2); |
让我们深入地看一下这个topology里面的spout和bolt是怎么实现的。Spout负责发射新的tuple到这个topology里面来。 TestWordSpout从["nathan", "mike", "jackson", "golda", "bertels"]里面随机选择一个单词发射出来。TestWordSpout里面的nextTuple()方法是这样定义的:
|
1
2
3
4
5
6
7
8
|
publicvoidnextTuple() { Utils.sleep(100); finalString[] words =newString[] {"nathan","mike", "jackson","golda","bertels"}; finalRandom rand =newRandom(); finalString word = words[rand.nextInt(words.length)]; _collector.emit(newValues(word));} |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
publicstaticclassExclamationBoltimplementsIRichBolt { OutputCollector _collector; publicvoidprepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; } publicvoidexecute(Tuple tuple) { _collector.emit(tuple,newValues(tuple.getString(0) +"!!!")); _collector.ack(tuple); } publicvoidcleanup() { } publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields("word")); }} |
让我们看看怎么以local mode运行ExclamationToplogy。
|
1
2
3
4
5
6
7
8
9
|
Config conf =newConfig();conf.setDebug(true);conf.setNumWorkers(2);LocalCluster cluster =newLocalCluster();cluster.submitTopology("test", conf, builder.createTopology());Utils.sleep(10000);cluster.killTopology("test");cluster.shutdown(); |
- TOPOLOGY_WORKERS(setNumWorkers) 定义你希望集群分配多少个工作进程给你来执行这个topology. topology里面的每个组件会被需要线程来执行。每个组件到底用多少个线程是通过setBolt和setSpout来指定的。这些线程都运行在工作进 程里面. 每一个工作进程包含一些节点的一些工作线程。比如, 如果你指定300个线程,60个进程, 那么每个工作进程里面要执行6个线程, 而这6个线程可能属于不同的组件(Spout, Bolt)。你可以通过调整每个组件的并行度以及这些线程所在的进程数量来调整topology的性能。
- TOPOLOGY_DEBUG(setDebug), 当它被设置成true的话, storm会记录下每个组件所发射的每条消息。这在本地环境调试topology很有用, 但是在线上这么做的话会影响性能的。
Worker processes(进程)
Executors (threads)(线程)
Tasks
7、流分组策略(Stream grouping)
|
1
2
3
4
5
6
7
|
TopologyBuilder builder =newTopologyBuilder();builder.setSpout(1,newRandomSentenceSpout(),5);builder.setBolt(2,newSplitSentence(),8) .shuffleGrouping(1);builder.setBolt(3,newWordCount(),12) .fieldsGrouping(2,newFields("word")); |
- 最简单的grouping是shuffle grouping, 它随机发给任何一个task。上面例子里面RandomSentenceSpout和SplitSentence之间用的就是shuffle grouping, shuffle grouping对各个task的tuple分配的比较均匀。
- 一种更有趣的grouping是fields grouping, SplitSentence和WordCount之间使用的就是fields grouping, 这种grouping机制保证相同field值的tuple会去同一个task, 这对于WordCount来说非常关键,如果同一个单词不去同一个task, 那么统计出来的单词次数就不对了。
l ShuffleGrouping:随机选择一个Task来发送。
l FiledGrouping:根据Tuple中Fields来做一致性hash,相同hash值的Tuple被发送到相同的Task。
l AllGrouping:广播发送,将每一个Tuple发送到所有的Task。
l GlobalGrouping:所有的Tuple会被发送到某个Bolt中的id最小的那个Task。
l NoneGrouping:不关心Tuple发送给哪个Task来处理,等价于ShuffleGrouping。
l DirectGrouping:直接将Tuple发送到指定的Task来处理。
8、使用别的语言来定义Bolt
|
1
2
3
4
5
6
7
8
9
|
publicstaticclassSplitSentenceextendsShellBoltimplementsIRichBolt { publicSplitSentence() { super("python","splitsentence.py"); } publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields("word")); }} |
SplitSentence继承自ShellBolt并且声明这个Bolt用python来运行,并且参数是: splitsentence.py。下面是splitsentence.py的定义:
|
1
2
3
4
5
6
7
8
9
|
importstormclassSplitSentenceBolt(storm.BasicBolt): defprocess(self, tup): words=tup.values[0].split(" ") forwordinwords: storm.emit([word])SplitSentenceBolt().run() |
9、可靠的消息处理
原文:http://www.aboutyun.com/thread-7394-1-1.html
storm入门原理介绍的更多相关文章
- storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与W ...
- (转发)storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Wor ...
- storm 入门原理介绍_AboutYUN
转自:http://www.aboutyun.com/thread-7394-1-1.html 了解Storm:http://www.aboutyun.com/thread-9547-1-2.html ...
- storm原理介绍
目录 storm原理介绍 一.原理介绍 二.配置 三.并行度 (一)storm拓扑的并行度可以从以下4个维度进行设置: (二)并行度的设置方法 (三)示例 四.分组 五.可靠性 (一)spout (二 ...
- 《Storm入门》中文版
本文翻译自<Getting Started With Storm>译者:吴京润 编辑:郭蕾 方腾飞 本书的译文仅限于学习和研究之用,没有原作者和译者的授权不能用于商业用途. 译者序 ...
- Kylin系列之二:原理介绍
Kylin系列之二:原理介绍 2018年4月15日 15:52 因何而生 Kylin和hive的区别 1. hive主要是离线分析平台,适用于已经有成熟的报表体系,每天只要定时运行即可. 2. Kyl ...
- Apache Storm内部原理分析
转自:http://shiyanjun.cn/archives/1472.html 本文算是个人对Storm应用和学习的一个总结,由于不太懂Clojure语言,所以无法更多地从源码分析,但是参考了官网 ...
- kafka集群原理介绍
目录 kafka集群原理介绍 (一)基础理论 二.配置文件 三.错误处理 kafka集群原理介绍 @(博客文章)[kafka|大数据] 本系统文章共三篇,分别为 1.kafka集群原理介绍了以下几个方 ...
- storm入门demo
一.storm入门demo的介绍 storm的入门helloworld有2种方式,一种是本地的,另一种是远程. 本地实现: 本地写好demo之后,不用搭建storm集群,下载storm的相关jar包即 ...
随机推荐
- SQL SERVER 存储/ 存储结构 内部数据结构
资料: http://www.cnblogs.com/woodytu/p/4488930.html
- LeetCode:平衡二叉树【110】
LeetCode:平衡二叉树[110] 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树. 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1. 示例 ...
- OC知识点(类方法,构造方法,组合模式,get,set方法,自动生成属性)
1.类方法的优势 不用创建对象,节省了空间,直接用类名调用类方法,类方法为外界提供一个方便的调用接口.(特点:类方法以加号开头,不能使用自身的成员变量,它的调用不依赖成员变量) 2.构造方法(初始化成 ...
- 大型网站系统与 Java 中间件实践
http://wanglizhi.github.io/2016/07/27/JavaWeb-And-MiddleWare/ 第一章 分布式系统介绍 分布式系统的定义:组件分布在网络计算机上,组件间仅仅 ...
- Python学习进程(1)Python简介
Python是一种结合了"解释性"."编译性"."互动性"和"面向对象"的脚本语言. (1)官方介绍: Pyth ...
- Qt Ping
QProcess对象可以直接执行cmd的命令,但是ping操作是会阻塞的,所以需要在子线程里ping QProcess *tempCmd = new QProcess(); tempCmd->s ...
- Python的装饰器实例用法小结
这篇文章主要介绍了Python装饰器用法,结合实例形式总结分析了Python常用装饰器的概念.功能.使用方法及相关注意事项 一.装饰器是什么 python的装饰器本质上是一个Python函数,它可以让 ...
- windows10 搜索桌面搜索功能失效的解决
windows桌面的搜索框用起来很方便,很多时候直接把不常用的程序的快捷方式删掉,直接从搜索框搜索就可以,但是这两天突然不能用了,今天晚上找了一下原因,终于弄好了. 参考知乎上面的陈滔滔的方法: ht ...
- Spring之rmi实例演示
环境介绍:本文中服务端客户端使用的都是ssm框架,配置文件分为spring_servlet.xml,spring_service.xml,mybatis.xml 在spring里面使用rmi完成远程调 ...
- Hive数据类型总结
转载自:http://blog.csdn.net/chenxingzhen001/article/details/20901045 Hive的内置数据类型可以分为两大类:(1).基础数据类型:(2). ...