[LeetCode] Distinct Subsequences [29]
题目
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is
a subsequence of "ABCDE" while "AEC" is
not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
解题思路
给两个字符串S和T, 求在字符串S中删除某些字符后得到T。问一共能有多少种删除方法?
这个题用常规方法超时。
得用动态规划,动态规划最基本的就是要找到动态规划方程。
首先记:dp[i][j] 为 从S[0..j-1]中删除某些字符后得 T[0...i-1]的不同删除方法数量。
动态规划方程为: dp[i][j] = dp[i][j-1] + (S[j-1]==T[i-1] ? dp[i-1][j-1] : 0);
代码实现
class Solution {
public:
int numDistinct(string S, string T) {
int m = S.size();
int n = T.size();
if(m<n) return 0;
vector<vector<int> > dp(n+1, vector<int>(m+1, 0));
for(int i=0; i<m; ++i)
dp[0][i] = 1;
for(int i=1; i<=n; ++i){
for(int j=1; j<=m; ++j){
dp[i][j] = dp[i][j-1] + (S[j-1]==T[i-1] ? dp[i-1][j-1] : 0);
}
}
return dp[n][m];
}
};
对于辅助数组我们其有用到的也仅仅有当前行和其前一行。所以我们能够仅仅申请两行的辅助数组。优化代码例如以下:
class Solution {
public:
int numDistinct(string S, string T) {
int m = S.size();
int n = T.size();
if(m<n) return 0;
vector<int> dp1(m+1, 1);
vector<int> dp2(m+1, 0);
for(int i=1; i<=n; ++i){
for(int j=1; j<=m; ++j){
dp2[j] = dp2[j-1] + (S[j-1]==T[i-1] ? dp1[j-1] : 0);
}
dp1.clear();
dp1 = dp2;
dp2[0] = 0;
}
return dp1[m];
}
};
另外。我开通了微信公众号--分享技术之美,我会不定期的分享一些我学习的东西.
)
[LeetCode] Distinct Subsequences [29]的更多相关文章
- 子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数)
引言 子序列和子字符串或者连续子集的不同之处在于,子序列不需要是原序列上连续的值. 对于子序列的题目,大多数需要用到DP的思想,因此,状态转移是关键. 这里摘录两个常见子序列问题及其解法. 例题1, ...
- [LeetCode] Distinct Subsequences 不同的子序列
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- [leetcode]Distinct Subsequences @ Python
原题地址:https://oj.leetcode.com/problems/distinct-subsequences/ 题意: Given a string S and a string T, co ...
- Leetcode Distinct Subsequences
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- [LeetCode] Distinct Subsequences 解题思路
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- LeetCode: Distinct Subsequences [115]
[称号] Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequ ...
- LeetCode: Distinct Subsequences 解题报告
Distinct Subsequences Given a string S and a string T, count the number of distinct subsequences of ...
- [Leetcode] distinct subsequences 不同子序列
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- 【LeetCode OJ】Distinct Subsequences
Problem Link: http://oj.leetcode.com/problems/distinct-subsequences/ A classic problem using Dynamic ...
随机推荐
- sublime3176注册码破解汉化及常用插件
官方网站下载地址:https://www.sublimetext.com/3 破解软件下载地址:https://www.lanzous.com/i1a7zfi 破解软件下载地址备用:https://d ...
- JavaSE基础之封装
JavaSE基础之封装 一.Java中的封装 1.字面意思: 包装: 2.专业含义: 面向对象的三大特征之一: 指的是将对象的状态信息隐藏在对象内部,不允许外部程序直接访问对象内部信息,而是通过该类所 ...
- 排序算法之快速排序Java实现
排序算法之快速排序 舞蹈演示排序: 冒泡排序: http://t.cn/hrf58M 希尔排序:http://t.cn/hrosvb 选择排序:http://t.cn/hros6e 插入排序:ht ...
- 20162327WJH使用队列:模拟票务站台代码分析
20162327WJH使用队列:模拟票务站台代码分析 用链队实现队列的情况 1.用链表实现队列的代码 关键方法代码及补全代(LinkedOueue类) public void enqueue(T el ...
- 【JavaScript代码实现三】JS对象的深度克隆
function clone(Obj) { var buf; if (Obj instanceof Array) { buf = []; // 创建一个空的数组 var i = Obj.length; ...
- Codeforces Round #257 (Div. 2 ) B. Jzzhu and Sequences
B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces Round #256 (Div. 2) C. Painting Fence
C. Painting Fence Bizon the Champion isn't just attentive, he also is very hardworking. Bizon the Ch ...
- BZOJ 2756: [SCOI2012]奇怪的游戏 网络流/二分
2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1594 Solved: 396[Submit][Stat ...
- SpringBoot读取配置properties配置文件
见:http://www.cnblogs.com/VergiLyn/p/6286507.html
- 长城小主机GW1等型号进BIOS的设置方法
主板型号 1.进BIOS办法 2.BIOS下设置U盘启动 3.主板设置上电启动 4.主要是否具有快速U盘启动功能 5.定时开机设置 945GMS Ctrl+Alt+F1(注意:自检响铃后,再按) 在B ...