Safran I, Shamir O. Spurious Local Minima are Common in Two-Layer ReLU Neural Networks[J]. arXiv: Learning, 2017.

@article{safran2017spurious,

title={Spurious Local Minima are Common in Two-Layer ReLU Neural Networks},

author={Safran, Itay and Shamir, Ohad},

journal={arXiv: Learning},

year={2017}}

文章的论证部分让人头疼,仅在这里介绍一下主要内容. 这篇文章关注的是单个隐层, 激活函数为ReLU的神经网络, 且对输入数据有特殊的限制, 数据为:

\[\sum_{i=1}^k [\mathbf{v}_i^T\mathbf{x}]_+,
\]

其中\(\mathbf{v}_i\)是给定的, 而\(\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})\). 而这篇文章考虑的是:



即, 这个损失函数是否具有局部最优解.

主要内容

定理1



注意, \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\)是正交的, 且\(n=k\). 这个时候,损失函数是有局部最优解的, 不过在后面作者提到, 如果\(n>k\), 即overparameter的情况, 这个情况是大大优化的, 甚至出现没有局部最优解(不过是通过实验说明的).

推论1

引理1 引理2

这部分有些符号没有给出, 如果感兴趣回看论文, 这俩个引理是用来说明, 如何在实验中, 通过一些指标来判断是否收敛到某个极值点了(当然, 这需要特别的计算机制来避免舍入误差带来的影响, 作者似乎是通过Matlab里的一个包实现的).

Spurious Local Minima are Common in Two-Layer ReLU Neural Networks的更多相关文章

  1. Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记

    题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Cont ...

  2. 缓存地图 ArcGIS ——Local compact and exploded tile cache layer for WPF API

      ArcGISArcGIS 主页 特色 合约 图库 地图 组 帮助 我的内容 我的组织 登录 我的个人资料 帮助 管理员指南 登出 0 搜索全部内容 搜索地图 搜索图层 搜索应用程序 搜索工具 搜索 ...

  3. Deep Linear Networks with Arbitrary Loss: All Local Minima Are Global

    目录 问题 假设和重要结果 证明 注 Laurent T, Von Brecht J H. Deep linear networks with arbitrary loss: All local mi ...

  4. Visualizing LSTM Layer with t-sne in Neural Networks

    LSTM 可视化 Visualizing Layer Representations in Neural Networks Visualizing and interpreting represent ...

  5. Local Binary Convolutional Neural Networks ---卷积深度网络移植到嵌入式设备上?

    前言:今天他给大家带来一篇发表在CVPR 2017上的文章. 原文:LBCNN 原文代码:https://github.com/juefeix/lbcnn.torch 本文主要内容:把局部二值与卷积神 ...

  6. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  7. 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》

    论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...

  8. 论文翻译:LP-3DCNN: Unveiling Local Phase in 3D Convolutional Neural Networks

    引言 传统的3D卷积神经网络(CNN)计算成本高,内存密集,容易过度拟合,最重要的是,需要改进其特征学习能力.为了解决这些问题,我们提出了整流局部相位体积(ReLPV)模块,它是标准3D卷积层的有效替 ...

  9. Neural Networks and Deep Learning(week3)Planar data classification with one hidden layer(基于单隐藏层神经网络的平面数据分类)

    Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损 ...

随机推荐

  1. Java 监控基础 - 使用 JMX 监控和管理 Java 程序

    点赞再看,动力无限.Hello world : ) 微信搜「程序猿阿朗 」. 本文 Github.com/niumoo/JavaNotes 和 未读代码网站 已经收录,有很多知识点和系列文章. 此篇文 ...

  2. [Windows编程]模块遍历

    模块遍历 整体思路 1.创建进程快照 2.遍历首次模块 3.继续下次遍历 4.模块信息结构体 相关API的调用 创建进程快照API HANDLE WINAPI CreateToolhelp32Snap ...

  3. fastjson过滤多余字段

    /**     * Description:过滤实体中的字段     * @param src 需要过滤的对象,如 list,entity     * @param clazz 实体的class    ...

  4. spring boot集成swagger文档

    pom <!-- swagger --> <dependency> <groupId>io.springfox</groupId> <artifa ...

  5. 【编程思想】【设计模式】【行为模式Behavioral】模板模式Template

    Python转载版 https://github.com/faif/python-patterns/blob/master/behavioral/template.py #!/usr/bin/env ...

  6. ganglia -api

    setup 命令: virtualenv ve source ve/bin/activate pip install -r requirements.txt python ganglia/gangli ...

  7. 数据源(Data Source

    数据源(Data Source)顾名思义,数据的来源,是提供某种所需要数据的器件或原始媒体.在数据源中存储了所有建立数据库连接的信息.就像通过指定文件名称可以在文件系统中找到文件一样,通过提供正确的数 ...

  8. myBatis批量添加实例

    <!-- 批量添加中转地数据 -->      <insert id="addBatch" parameterType="com.isoftstone. ...

  9. 加密时java.security.InvalidKeyException: Illegal key size or default parameters解决办法

    需 Java几乎各种常用加密算法都能找到对应的实现.因为美国的出口限制,Sun通过权限文件(local_policy.jar.US_export_policy.jar)做了相应限制.因此存在一些问题: ...

  10. 【Linux】【Basis】Grub

    GRUB(Boot Loader):   1. grub: GRand Unified Bootloader grub 0.x: grub legacy grub 1.x: grub2   2. gr ...