由于是排列,因此b一定只出现了一次,找到出现的位置并向左右扩展
考虑如何判定是否满足条件,当且仅当$[左边比b小的数ls]+[右边比b小的数rs]=[左边比b大的数lb]+[右边比b大的数rb]$,暴力枚举+线段树复杂度为$o(n^2logn)$
变形上式,得到$ls-lb=rb-rs$,对两边分别处理后对应方案相乘求和即为答案

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,m,a[100005],s1[200005],s2[200005];
4 long long ans;
5 int main(){
6 scanf("%d%d",&n,&m);
7 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
8 for(int i=1;i<=n;i++)
9 if (a[i]==m){
10 int t=n;
11 s1[n]=s2[n]=1;
12 for(int j=i-1;j;j--)s1[t+=2*(a[j]<m)-1]++;
13 t=n;
14 for(int j=i+1;j<=n;j++)s2[t+=2*(a[j]>m)-1]++;
15 for(int j=1;j<=2*n;j++)ans+=1LL*s1[j]*s2[j];
16 printf("%lld",ans);
17 return 0;
18 }
19 }

[bzoj1303]中位数图的更多相关文章

  1. BZOJ-1303 中位数图

    先找到B的位置x,然后依次统计A[i..x-1](0<i<x)中小于B的个数,和A[x+1..i](x<i<n)中大于B的个数 最后Answer等于(左边有i个小于B的情况总数 ...

  2. 【BZOJ1303】[CQOI2009]中位数图(模拟)

    [BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...

  3. bzoj千题计划175:bzoj1303: [CQOI2009]中位数图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...

  4. BZOJ1303 [CQOI2009]中位数图 【乱搞】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 3086  Solved: 1898 [Submit][Sta ...

  5. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  6. BZOJ 1303: [CQOI2009]中位数图【前缀和】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2737  Solved: 1698[Submit][Statu ...

  7. bzoj 1303: [CQOI2009]中位数图 数学

    1303: [CQOI2009]中位数图 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  8. BZOJ1303 [CQOI2009]中位数图 其他

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1303 题意概括 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数 ...

  9. BZOJ1303 [CQOI2009]中位数图

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. PowerDotNet平台化软件架构设计与实现系列(02):数据库管理平台

    为了DB复用和简化管理,我们对常见应用依赖的DB模块进行更高级的提取和抽象. 虽然一些ORM可以简化DB开发,但是我们还是需要进行改进和优化,否则应用越多,后期管理运维越混乱. 根据常见开发需要,数据 ...

  2. SONiC架构分析

    目录 系统架构 设计原则 核心组件 SWSS 容器 syncd 容器 网络应用容器 内部通信模型 SubscriberStateTable NotificationProducer/Consumer ...

  3. redis在微服务领域的贡献

    本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 前言 说到redis,可能大家的脑海中蹦出的关键词是:NoSQL.KV.高性能.缓存等.但今天 ...

  4. vue3.x自定义组件双向数据绑定v-model

    vue2.x 语法 在 2.x 中,在组件上使用 v-model 相当于绑定 value prop 并触发 input 事件: <ChildComponent v-model="pag ...

  5. [no code][scrum meeting] Alpha 14

    项目 内容 会议时间 2020-04-22 会议主题 周中讨论会议 会议时长 45min 参会人员 全体成员 $( "#cnblogs_post_body" ).catalog() ...

  6. the Agiles Scrum Meeting 2

    会议时间:2020.4.10 21:00 1.每个人的工作 今天已完成的工作 yjy:debug:班级创建了个人项目不能访问班级:教师窗口的前端bug. issues:Bug:教师创建博客时显示项目为 ...

  7. 对dy和Δy的浅薄理解

    一.导数定义 当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0) ...

  8. cat userlist(课上练习)

    问题描述 Linux文件系统的三层抽象是什么? 写出Cat userlist的过程,要详述目录文件,i-node.数据块,要画图示意. 假设块大小为4k, userlist的大小不小于10k,自己假设 ...

  9. PCIE学习笔记--TLP Header详解(三)

    目录篇地址为:http://blog.chinaaet.com/justlxy/p/5100053481 Completions Completions的TLP Header的格式如下图所示: 这里来 ...

  10. swagger3.0(springboot)消除basic-error-controller

    1.新建springboot项目,可以通过https://start.spring.io/快速生成springboot项目. 2.引入jar依赖: <dependency> <gro ...