3d数学 7 矩阵
7.1 矩阵-数学定义
在线性代数中, 矩阵就是以行和列形式组织的矩形数字块。矩阵是向量的数组。
7.1.1 矩阵的维度和记法
矩阵的维度被定义为它包含了多少行和多少列。一个\(r \times c\)矩阵有r行, c列。下面是一个\(4 \times 3\)矩阵的例子:
\(\begin{bmatrix} 4 & 0 & 12 \\ -5 & 4 & 3 \\ 12 & -4/3 & -1 \\ 1/2 & 18 & 0 \\ \end{bmatrix}\)
黑色大写字母表示矩阵,如:M,A,R。需要引用矩阵的分量时,采用下标法,常用对应的斜体小写字母。如下\(3 \times 3\)矩阵所示:
\(\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{bmatrix}\)
7.1.2 方阵
行数和列数相同的矩阵称为方阵。
方阵的对角线元素就是方阵中行号和列号相同的元素。
对角矩阵
所有非对角线元素都是0,如:
\(\begin{bmatrix} 3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix}\)
单位矩阵
\(n\)维单位矩阵记作\(I_n\),是\(n \times n\)矩阵,对角线元素都为1,其他元素为0。如,\(3 \times 3\)单位矩阵:
\(I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\)
7.1.3 向量做为矩阵使用
矩阵的行数和列数可以是任意正整数,当然也包括1。一个\(n\)维向量能被当作\(1 \times n\)矩阵或\(n \times 1\)矩阵。\(1 \times n\)矩阵称为行向量,\(n \times 1\)矩阵称为列向量。如:
\(\begin{bmatrix}1 & 2 & 3\end{bmatrix} \begin{bmatrix} 1\\ 2\\ 3\end{bmatrix}\)
7.1.4 转置
一个\(r \times c\)矩阵\(M\)。\(M\)的转置记作\(M^T\),是一个\(c \times r\)矩阵(\(M_{ij}^T = M_{ji}\)),即沿着矩阵的对角线翻折。
\(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ \end{bmatrix}^T = \begin{bmatrix} 1 & 4 & 7 & 10\\ 2 & 5 & 8 & 11\\ 3 & 6 & 9 & 12 \\ \end{bmatrix}\)
行列向量之间的转换
\(\begin{bmatrix}x & y & z\end{bmatrix}^T = \begin{bmatrix} x\\ y\\ z\end{bmatrix}\) \(\begin{bmatrix}x & y & z\end{bmatrix} = \begin{bmatrix} x\\ y\\ z\end{bmatrix}^T\)
基本原理
- 对任意矩阵\(M\), \((M^T)^T = M\)
- 对于任意对角矩阵\(D\), 都有\(D^T = D\),包括单位矩阵\(I\)也是如此。
7.1.5 标量和矩阵的乘法
矩阵\(M\)和标量\(k\)相乘,结果是一个和\(M\)维数相同的矩阵。记法如下:
\(kM = k \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ \end{bmatrix} = \begin{bmatrix} km_{11} & km_{12} & km_{13} \\ km_{21} & km_{22} & km_{23} \\ km_{31} & km_{32} & km_{33} \\ \end{bmatrix}\)
7.1.6 矩阵乘法
\(C = AB\)
\(c_{ij} = \displaystyle\sum_{k=1}^na_{ik}b_{kj}\)
如:
\(AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ \end{bmatrix}\)
乘法规则
- \(MI = IM = M\)
- 不满足交换律:\(AB \ne BA\)
- 结合律:\((AB)C = A(BC)\)
- 与标量的结合律:\((kA)B = k(AB) = A(kB)\)
- 转置: \((AB)^T = B^TA^T\)
7.2 矩阵 - 几何解释
一般来说,方阵能描述任意线性变换。
\(\begin{bmatrix}1 \\ -3 \\ 4 \\ \end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 0 \\ \end{bmatrix} + \begin{bmatrix}0 \\ -3 \\ 0 \\ \end{bmatrix} + \begin{bmatrix}0 \\ 0 \\ 4 \\ \end{bmatrix}\)
一般来说:任意向量\(v\)都能写为“扩展”形式:
\(v=\begin{bmatrix}x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix}x \\ 0 \\ 0 \\ \end{bmatrix} + \begin{bmatrix}0 \\ y \\ 0 \\ \end{bmatrix} + \begin{bmatrix}0 \\ 0 \\ z \\ \end{bmatrix}\)
或
\(v=\begin{bmatrix}x \\ y \\ z \\ \end{bmatrix} = x\begin{bmatrix}1 \\ 0 \\ 0 \\ \end{bmatrix} + y\begin{bmatrix}0 \\ 1 \\ 0 \\ \end{bmatrix} + z\begin{bmatrix}0 \\ 0 \\ 1 \\ \end{bmatrix}\)
注意,右边的单位向量就是\(x,y,z\)轴,用向量重写上面的等式,分别用\(p, g, r\)定义为指向\(+x, +y, +z\)方向的单位向量
\(v = xp + yp + zr\)
将向量表示为基向量的线性组和
用三个向量\(p, q, r\)来构建一个\(3 \times 3\)的矩阵\(M\),可以得到如下公式
\(M=\begin{bmatrix}p \\ q \\ r \\ \end{bmatrix} = \begin{bmatrix}p_x & p_y & p_z \\ q_x & q_y & q_z \\ r_x & r_y & r_z \\ \end{bmatrix}\)
用一个向量乘以该矩阵,得到:
\(\begin{bmatrix}x & y & z\end{bmatrix}\begin{bmatrix}p_x & p_y & p_z \\ q_x & q_y & q_z \\ r_x & r_y & r_z \\ \end{bmatrix} = \begin{bmatrix}xp_x + yq_x + zr_x & xp_y + yq_y + zr_y & xp_z + yq_z + zr_z\end{bmatrix} = xp + yq + zr\)
如果把矩阵的行解释为坐标系的基向量,那么乘以该向量就相当于执行了一次坐标转换。若有\(aM = b\),我们就可以说,\(M\)将\(a\)转换到\(b\)。
3d数学 7 矩阵的更多相关文章
- 3D数学 ---- 矩阵和线性变换[转载]
http://blog.sina.com.cn/s/blog_536e0eaa0100jn7c.html 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线 ...
- 3D数学读书笔记——矩阵基础
本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031 矩 ...
- 3D数学读书笔记——矩阵基础番外篇之线性变换
本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...
- 3D数学的实际应用
以前自己在学习三维程序开发时并没有在意3D数学在程序中的重要作用,但在实际工作中逐渐发现:自己忽视了3D数学的作用,我们实际开发工作总要求模型准确的变换,而不是强调渲染有多炫,那是游戏,如果是仿真程序 ...
- Unity3D for VR 学习(6): 再次温故知新-3D数学
一年前,系统学习过3D数学,并记录了一篇博客<C#程序员整理的Unity 3D笔记(十):Unity3D的位移.旋转的3D数学模型>. 一年后,再次温习之. 坐标系:Unity3D使用左手 ...
- OpenGL编程(八)3D数学与坐标变换
笛卡尔坐标 一维坐标系 以一个点为原点,选定一个方向为正方向(相反的方向为反方向),以一定的距离为标尺建立一维坐标系.一维坐标系一般应用于描述在一维空间中的距离. 举个例子:一维坐标系好比一条拉直的电 ...
- 3d数学总结帖
3d数学总结帖,以下是对3d学习过程中数学知识的简单总结 角度值和弧度制的互转 Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180 Rad2Deg 弧度A2转换角度A1 => ...
- Unity3D之空间转换学习笔记(三):3D数学
3D数学基础 向量 向量可以看做具有方向和大小的一条线段. 比如:我们如果用点A减去点B,则可以得到一个向量,该向量的方向为点B面向点A的方向,而大小为两点的距离.这个方法在游戏开发中经常用到,比如我 ...
- 3D数学学习笔记——笛卡尔坐标系
本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...
随机推荐
- C解析config
#cat bb.c #include <stdio.h> #include <stdlib.h> #include <string.h> #include < ...
- git对vue项目进行版本管理
生成本地仓库 步骤一:git init 步骤二:git add * 步骤三:git commit -m 'init team' 创建远程仓库 new responstory 复制关联代码的命令 将本地 ...
- LOJ 6145 Easy (动态点分治+线段树)
题目传送门 先建出来点分树,以每个点为根开线段树,维护点分子树内编号为$[l,r]$的儿子到根的距离最小值 每次查询$x$开始,沿着点分树向上跑,在每个点的线段树的$[l,r]$区间里都查一遍取$mi ...
- springcloud(四):Eureka客户端公共组件打包方式
, 一.前言 各位大佬应该知道,在大型项目中都需要有数据传输层,一般项目都采用的是MVC结构,如果有10个表,则会创建10个实体类,在各个层之间应该使用实体类传递数据: 在微服架构中,也许 ...
- 微信公众号:1-IDHTTP控件:GET/POST 请求获取access_token
(图来源于方蓓?) 首先要理解公众号的流程.通过图知道,我们要:1.你要有个web服务器,用于和微信服务器通讯.你的web服务器必须让微信服务器能找到.2.通信要求按照微信公众号开发要求的格式提供相关 ...
- hdu 1273最大流
#include<stdio.h> #include<string.h> #define inf 1000000000 #include<queue> #defin ...
- 如何将变量id添加到jquery的选择器中
今天在做广州仲裁委员会的系统时这样的一个需求,需要在页面一加载的时候查询各个项目的案件数,这里有很多个项目,一开始我是这样写的: 代码如下: $.get(assignedCaseUrl,functio ...
- Spring MVC的@RequestMapping多个URL映射到同一个方法
@RequestMapping可以是一个URL对应一个方法,也可以多个URL对应同一个方法,写法如下: @RequestMapping(value={"url","res ...
- sql简单优化点滴
select uppagent.agent_no AGENT_NO, ISNULL(countsubagent,0) REFERRAL_AGENT_NUM, ISNULL(countsubcustom ...
- HDU4882ZCC Loves Codefires(贪心)
ZCC Loves Codefires Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...