ubuntu之路——day10.6 如何理解人类表现和超过人类表现
从某种角度来说,已知的人类最佳表现其实可以被当做贝叶斯最优错误,对于医学图像分类可以参见下图中的例子。

那么如何理解超过人类表现,在哪些领域机器已经做到了超越人类呢?

ubuntu之路——day10.6 如何理解人类表现和超过人类表现的更多相关文章
- ubuntu之路——day10.4 什么是人的表现
结合吴恩达老师前面的讲解,可以得出一个结论: 在机器学习的早期阶段,传统的机器学习算法在没有赶超人类能力的时候,很难比较这些经典算法的好坏.也许在不同的数据场景下,不同的ML算法有着不同的表现. 但是 ...
- ubuntu之路——day10.7 提高模型的表现
总结一下就是在提升偏差的方面(即贝叶斯最优误差和训练误差的差距) 1.尝试更大更深的网络 2.加入优化算法比如前面提过的momentum.RMSprop.Adam等 3.使用别的神经网络架构比如RNN ...
- ubuntu之路——day10.5 可避免偏差
可避免偏差: 总结一下就是当贝叶斯最优误差接近于训练误差的时候,比如下面的例子B,我们不会说我们的训练误差是8%,我们会说我可避免偏差是0.5%.
- ubuntu之路——day10.3 train/dev/test的划分、大小和指标更新
train/dev/test的划分 我们在前面的博文中已经提到了train/dev/test的相关做法.比如不能将dev和test混为一谈.同时要保证数据集的同分布等. 现在在train/dev/t ...
- ubuntu之路——day10.2单一数字评估指标与满足和优化的评估指标
单一数字评估指标: 我们在平时常用到的模型评估指标是精度(accuracy)和错误率(error rate),错误率是:分类错误的样本数站样本总数的比例,即E=n/m(如果在m个样本中有n个样本分类错 ...
- ubuntu之路——day10.1 ML的整体策略——正交化
orthogonalization 正交化的概念就是指,将你可以调整的参数设置在不同的正交的维度上,调整其中一个参数,不会或几乎不会影响其他维度上的参数变化,这样在机器学习项目中,可以让你更容易更快速 ...
- Python之路,Day10 - 异步IO\数据库\队列\缓存
Python之路,Day9 - 异步IO\数据库\队列\缓存 本节内容 Gevent协程 Select\Poll\Epoll异步IO与事件驱动 Python连接Mysql数据库操作 RabbitM ...
- python之路-Day10
操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 ...
- python学习之路-day10
一.什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程. 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程. 车间负责把资源 ...
随机推荐
- net webapi jwt验证授权
参考文章:https://blog.csdn.net/liwan09/article/details/83820651
- kubernetes集群的认证、授权、准入控制
一.kubernetes集群安全架构 用户使用kubectl.客户机或通过REST请求访问API.可以授权用户和Kubernetes服务帐户进行API访问.当一个请求到达API时,它会经历几个阶段,如 ...
- Spark-2.3.2 HBase BulkLoad
在大量数据需要写入HBase时,通常有Put方式和BulkLoad两种方式. Put不做解释. BulkLoader方式的优势在于: 1.不会触发WAL预写日志,当表还没有数据时进行数据导入不会产生F ...
- Java精通并发-wait与notify方法案例剖析与详解
在上一节中对Object的wait.notify.notifyAll方法进行了总结,这次举一个具体案例来进行巩固,题目如下: 编写一个多线程程序,实现这样的一个目标: 1.存在一个对象,该对象有一个i ...
- 《你说对就队》第八次团队作业:Alpha冲刺
<你说对就队>第八次团队作业:Alpha冲刺 项目 内容 这个作业属于哪个课程 [教师博客主页链接] 这个作业的要求在哪里 [作业链接地址] 团队名称 <你说对就队> 作业学习 ...
- destoon模板存放调取规则
一.模板存放及调用规则 模板存放于系统 template 目录,template 目录下的一个目录例如 template/default/ 即为一套模板 模板文件以 .htm 为扩展名,可直 ...
- LG4723 【模板】常系数线性递推
P4723 [模板]常系数齐次线性递推 题目描述 求一个满足$k$阶齐次线性递推数列${a_i}$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n ...
- centos7下用命令安装node&pm2
一.下载node安装包 1.wget https://npm.taobao.org/mirrors/node/latest-v12.x/node-v12.4.0-linux-x64.tar.gz 二. ...
- HTTP的幂等性
转自: https://www.jianshu.com/p/234cf2e96832 理解HTTP幂等性基于HTTP协议的Web API是时下最为流行的一种分布式服务提供方式.无论是在大型互联网应用还 ...
- RCNN,Fast RCNN,Faster RCNN 的前生今世:(2)R-CNN
Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作.作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于 ...