题目描述

每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N). John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i 他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.

输入

* 第一行: 三个空格分开的数: N, M, 和 K * 第2..M+1行: 第i+1行有三个空格分开的数:P1_i, P2_i, 和 T_i

输出

* 第一行: 更新最多K条路经后的最短路经长度.

样例输入

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100

样例输出

1


题解

分层图最短路

dis[i][j]为更新j条路径时1到i的最短距离。

然后跑分层图最短路。

网上说正解是堆优化Dijkstra,然而我不太会写,只好搞了一个双端队列优化Spfa才勉强卡时过。

#include <cstdio>
#include <cstring>
#include <utility>
#include <queue>
using namespace std;
deque<pair<int , int> > q;
int head[50010] , to[100010] , next[100010] , cnt , inq[50010][21];
long long len[100010] , dis[50010][21];
void add(int x , int y , long long z)
{
to[++cnt] = y;
len[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
int main()
{
int n , m , k , i , j , x , y;
long long z , ans = 0x3f3f3f3f3f3f3f3fll;
pair<int , int> u , tmp;
scanf("%d%d%d" , &n , &m , &k);
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d%lld" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
memset(dis , 0x3f , sizeof(dis));
dis[1][0] = 0;
q.push_front(make_pair(1 , 0));
while(!q.empty())
{
u = q.front();
q.pop_front();
x = u.first , y = u.second;
inq[x][y] = 0;
for(i = head[x] ; i ; i = next[i])
{
for(j = 0 ; j <= 1 ; j ++ )
{
if(y + j <= k && dis[to[i]][y + j] > dis[x][y] + len[i] * (j ^ 1))
{
dis[to[i]][y + j] = dis[x][y] + len[i] * (j ^ 1);
if(!q.empty()) tmp = q.front();
if(!q.empty() && dis[to[i]][y + j] < dis[tmp.first][tmp.second]) q.push_front(make_pair(to[i] , y + j));
else q.push_back(make_pair(to[i] , y + j));
}
}
}
}
for(i = 0 ; i <= k ; i ++ ) ans = min(ans , dis[n][i]);
printf("%lld\n" , ans);
return 0;
}

【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路的更多相关文章

  1. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 -- 分层图最短路

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MB Description 每天,农夫 ...

  2. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  3. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  4. [BZOJ1579] [Usaco2009 Feb]Revamping Trails 道路升级(分层图最短路 + 堆优化dijk)

    传送门 dis[i][j]表示第i个点,更新了j次的最短路 此题不良心,卡spfa #include <queue> #include <cstdio> #include &l ...

  5. [BZOJ1579][Usaco2009 Feb]Revamping Trails 道路升级(二维最短路问题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1579 分析: 设d[i][j]表示从1走到i.改了j条边的最短路径长度 如果设i相连的 ...

  6. BZOJ1579 [Usaco2009 Feb]Revamping Trails 道路升级

    各种神作不解释QAQQQ 先是写了个作死的spfa本机过了交上去T了... 然后不想写Dijkstra各种自暴自弃... 最后改了一下步骤加了个SLF过了... 首先一个trivial的想法是$dis ...

  7. 分层图最短路 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M< ...

  8. Bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 dijkstra,堆,分层图

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1573  Solv ...

  9. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

随机推荐

  1. ov5640介绍

    1 摄像头 在各类信息中,图像含有最丰富的信息,作为机器视觉领域的核心部件,摄像头被广泛地应用在安防.探险以及车牌检测等场合.摄像头按输出信号的类型来看可以分为数字摄像头和模拟摄像头,按照摄像头图像传 ...

  2. 北京Uber优步司机奖励政策(1月9日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 成都Uber优步司机奖励政策(3月10日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. .net core 中后台获取前台 数据(post)的方法

    [HttpPost] public async Task<JsonResult> EditPoint() { Stream reqStream = Request.Body; string ...

  5. Python:TypeError: 'range' object doesn't support item deletion

    报错代码: dataIndex = range(m) del (dataIndex[randIndex]) 报错信息: 错误原因: python3 range返回的是range对象,不是数组对象 解决 ...

  6. MVC下的Area区域知识点

    新建area区域 1.如果与根目录下的url相同,那么需要在RouteConfig.cs中 public static void RegisterRoutes(RouteCollection rout ...

  7. 【Linux 运维】查看网络连接状态信息之netstat和ss命令详解

    一.netstat 常用命令详解 通过man netstat可以查看netstat的帮助信息: netstat 命令:用于显示各种网络相关信息,如网络连接,路由表,接口状态,无效连接,组播成员 等等. ...

  8. [2018 ACL Short and System] 对话系统

    Short Paper(s) 1.  Task-oriented Dialogue System for Automatic Diagnosis. (Cited by 0) Zhongyu Wei, ...

  9. Python3 下安装python-votesmart

    在python2下安装python-smart还比较容易,而python3中由于很多函数库的变化直接使用python setup.py install 命令来安装的话会导致错误,而导致错误的原因就是p ...

  10. error:no module named StringIO or cStringIO

    一般遇到没有某个模块问题的时候,通常的解决方法是pip相应的模块: 不过,鉴于Python2和python3的不同(让人头疼) 解决方法:在python3中,该模块被新的模块取代,即io. 重新imp ...