次大公约数就是gcd再除以其最小质因子(如果有的话)。可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005;
unordered_map<ll,ll> mmp;
ll gcd(ll x,ll y){ return y?gcd(y,x%y):x;}
int n,c[233],num;
ll a,d[233],now; void dfs(int x,ll y,ll Min){
if(x==num){ mmp[y]=Min?y/Min:-1; return;}
dfs(x+1,y,Min),y*=d[x+1];
if(!Min) Min=d[x+1];
for(int u=1;u<=c[x+1];u++,y*=(ll)d[x+1]) dfs(x+1,y,Min);
} inline void prework(ll x){
for(int i=2;i*(ll)i<=x;i++) if(!(x%i)){
d[++num]=i;
for(;!(x%i);c[num]++,x/=i);
}
if(x!=1) d[++num]=x,c[num]=1; dfs(0,1,0);
} inline void output(){
printf("%lld ",mmp[a]);
for(int i=2;i<=n;i++) scanf("%lld",&now),printf("%lld ",mmp[gcd(a,now)]);
} int main(){
scanf("%d%lld",&n,&a);
prework(a);
output();
return 0;
}

  

[UR #3] 核聚变反应强度的更多相关文章

  1. 【uoj#48】[UR #3]核聚变反应强度 数论

    题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的 ...

  2. 【UOJ#48】【UR #3】核聚变反应强度(质因数分解)

    [UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所 ...

  3. uoj 48 核聚变反应强度 次小公因数

    [UR #3]核聚变反应强度 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/48 Description 著名核 ...

  4. [UOJ #48]【UR #3】核聚变反应强度

    题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$ 题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最 ...

  5. [UOJ48] 核聚变反应强度

    QUQ 思路 求出a1的所有约数,与a1.ai放入同一数组: 求出gcd(a1,ai): 枚举约数,得出ans; 代码实现 #include<cmath> #include<cstd ...

  6. 【UOJ Round #3】

    枚举/二分 C题太神窝看不懂…… 核聚变反应强度 QwQ很容易发现次小的公约数一定是gcd的一个约数,然后……我就傻逼地去每次算出a[1],a[i]的gcd,然后枚举约数……这复杂度……哦呵呵... ...

  7. $2018/8/15 = Day \ \ 1$杂题整理

    \(\mathcal{Morning}\) \(Task1\)高精度\(\times\)高精度 哦呵呵--真是喜闻乐见啊,我发现这一部分比较有意思于是就打算整理下来233.窝萌现在有一个整数\(A = ...

  8. ur c题练习

    ur的c果然sxbk啊 ur5:“三个莫比乌斯反演掷地有声"——摘自v(c)f(z)k(y)语录,无删改 ur2:有根树分治裸题,复杂度玄学$O(n\sqrt{n})$. 首先,转化为统计k ...

  9. JS正则检测密码强度

    今天遇到个需求,使用JS检测密码强度:密码长度最短为8,必须同时包含字母.数字.特殊符号. 代码如下: /*         * 检测密码复杂度         */         function ...

随机推荐

  1. “帮你APP”团队冲刺1

    1.整个项目预期的任务量 (任务量 = 所有工作的预期时间)和 目前已经花的时间 (所有记录的 ‘已经花费的时间’),还剩余的时间(所有工作的 ‘剩余时间’) : 所有工作的预期时间:88h 目前已经 ...

  2. laravel5.2总结--邮件

    laravel自带SwiftMailer库,集成了多种邮件API,支持多种邮件驱动方式,包括smtp.Mailgun.Maildrill.Amazon SES.mail和sendmail,Mailgu ...

  3. 【Palindrome Partitioning】cpp

    题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...

  4. mini购物车程序

    product_list=[("Iphohe",5800),("Mac Pro Book",12900), ("xiaomi 4c",120 ...

  5. python学习-- django 2.1.7 ajax 请求 进阶版

    #原来版本 $.get("/add/",{'a':a,'b':b}, function(ret){ $('#result').html(ret)}) #进阶版  $.get(&qu ...

  6. 【数据结构与算法】Fibonacci Sequence

    学计算机的对 Fibonacci 都并不陌生,在课堂上一讲到递归几乎都会提到 Fibonacci 数列.不久前,我对 Fibonacci 产生了一些兴趣,就在这里把自己的想法给记录下来. 递推公式: ...

  7. sql2005 和sql2008 同时安装

    Hkey_local_machine\Software\Wow6432Node\Microsoft\Microsoft SQL Server\90\Tools\ShellSEM 中的ShellSEM重 ...

  8. c++中读取文件最快的方法

    https://www.byvoid.com/blog/fast-readfile 可以看看了.

  9. Mysql InnoDB事务

    http://www.cnblogs.com/benshan/archive/2013/01/19/2867244.html 事务的四个特性 1.原子性(atomicity)原子性是指整个数据库事务是 ...

  10. Mysql实战之数据备份

    author:JevonWei 版权声明:原创作品 blog:http://119.23.52.191/ --- 数据备份和恢复 mysqldump 冷备份单库(不会创建新库,需要手动创建并指定导入数 ...