次大公约数就是gcd再除以其最小质因子(如果有的话)。可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005;
unordered_map<ll,ll> mmp;
ll gcd(ll x,ll y){ return y?gcd(y,x%y):x;}
int n,c[233],num;
ll a,d[233],now; void dfs(int x,ll y,ll Min){
if(x==num){ mmp[y]=Min?y/Min:-1; return;}
dfs(x+1,y,Min),y*=d[x+1];
if(!Min) Min=d[x+1];
for(int u=1;u<=c[x+1];u++,y*=(ll)d[x+1]) dfs(x+1,y,Min);
} inline void prework(ll x){
for(int i=2;i*(ll)i<=x;i++) if(!(x%i)){
d[++num]=i;
for(;!(x%i);c[num]++,x/=i);
}
if(x!=1) d[++num]=x,c[num]=1; dfs(0,1,0);
} inline void output(){
printf("%lld ",mmp[a]);
for(int i=2;i<=n;i++) scanf("%lld",&now),printf("%lld ",mmp[gcd(a,now)]);
} int main(){
scanf("%d%lld",&n,&a);
prework(a);
output();
return 0;
}

  

[UR #3] 核聚变反应强度的更多相关文章

  1. 【uoj#48】[UR #3]核聚变反应强度 数论

    题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的 ...

  2. 【UOJ#48】【UR #3】核聚变反应强度(质因数分解)

    [UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所 ...

  3. uoj 48 核聚变反应强度 次小公因数

    [UR #3]核聚变反应强度 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/48 Description 著名核 ...

  4. [UOJ #48]【UR #3】核聚变反应强度

    题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$ 题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最 ...

  5. [UOJ48] 核聚变反应强度

    QUQ 思路 求出a1的所有约数,与a1.ai放入同一数组: 求出gcd(a1,ai): 枚举约数,得出ans; 代码实现 #include<cmath> #include<cstd ...

  6. 【UOJ Round #3】

    枚举/二分 C题太神窝看不懂…… 核聚变反应强度 QwQ很容易发现次小的公约数一定是gcd的一个约数,然后……我就傻逼地去每次算出a[1],a[i]的gcd,然后枚举约数……这复杂度……哦呵呵... ...

  7. $2018/8/15 = Day \ \ 1$杂题整理

    \(\mathcal{Morning}\) \(Task1\)高精度\(\times\)高精度 哦呵呵--真是喜闻乐见啊,我发现这一部分比较有意思于是就打算整理下来233.窝萌现在有一个整数\(A = ...

  8. ur c题练习

    ur的c果然sxbk啊 ur5:“三个莫比乌斯反演掷地有声"——摘自v(c)f(z)k(y)语录,无删改 ur2:有根树分治裸题,复杂度玄学$O(n\sqrt{n})$. 首先,转化为统计k ...

  9. JS正则检测密码强度

    今天遇到个需求,使用JS检测密码强度:密码长度最短为8,必须同时包含字母.数字.特殊符号. 代码如下: /*         * 检测密码复杂度         */         function ...

随机推荐

  1. 全球征集-如何实现回文SQL的查询

    有个表,以下是创建的SQL: CREATE TABLE [dbo].[SysName]( ,) NOT NULL, ) COLLATE Chinese_PRC_CI_AS NULL, ) COLLAT ...

  2. 3 View - Request对象

    1.HttpReqeust对象 服务器接收到http协议的请求后,会根据报文创建HttpRequest对象 视图函数的第一个参数是HttpRequest对象 在django.http模块中定义了Htt ...

  3. Django权限管理系统设计分析

    权限管理顾名思义,其实就是角色控制权限的系统,每个用户对应一个角色,每个角色有对应的权限,比如公司会有CEO,总监,销售经理,销售员,每个人的权限都不一样,那我们给他展示的url也都不同 一.首先创建 ...

  4. iOS下单例模式实现(二)利用宏定义快速实现

    在上一节里提到了用利用gcd快速实现单例模式. 一个项目里面可能有好几个类都需要实现单例模式.为了更高效的编码,可以利用c语言中宏定义来实现. 新建一个Singleton.h的头文件. // @int ...

  5. Spring boot 上传文件大小限制

    1.spring boot 1.x 版本 application.properties 文件中 位置在(resources下) spring.http.multipart.maxFileSize = ...

  6. LeetCode 62 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ).机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角.问总共有多少条不同的路径? 示例 1: 输入: ...

  7. 二维数组的动态分配(new)、初始化(memset)和撤销(delete)

    来自http://blog.csdn.net/maverick1990/article/details/22829135 一维数组 动态分配,int *array = new int[10] 初始化, ...

  8. Linux下如何挂载和卸载硬盘?

    fdisk -l 查看所有被系统识别的磁盘 df -h 查看磁盘占用情况 sudo umount -v /media 卸载挂载点的硬件 df -T 查看所有磁盘的文件系统类型(type) mount ...

  9. angular2多组件通信流程图

    知识点1:组件属性的双向绑定,需要在属性+Change 作为Output方法返回即可. 知识点2:更新子组件的值,不会引起output触发,父组件不会更新绑定的值 知识点3:属性的双向绑定,只会子组件 ...

  10. Codeforces 1063D Candies for Children

    题目大意 给定整数 $n, k, l, r$,$1\le n, k \le 10^{11}$,$1\le l, r \le n$ . 令 $ m = r - l + 1$,若 $m \le 0$,$m ...