P1169 [ZJOI2007]棋盘制作

给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵

\(n , m \leq 2000\)

悬线法

悬线法可以求出给定矩阵中满足条件的最大子矩阵

对于每个点, 维护 两条等长的线段, 两线段的底部达到此点的纵坐标, 分别代表能从这个点达到的最左 / 最右端点

大概长这样

   l        r
| |
| |
| |
| |
| * |

那么枚举每个点的这两条线段, 不断用 \((r - l + 1) * dis\) 更新答案即可

这就是悬线法

这两条线段看上去很难维护, 其实不然

因为其等长, 我们将这两条线段用如下几个属性表示:

\(l[i][j]\) 表示从 \((i, j)\) 能达到的最左的坐标

\(r[i][j]\) 表示从 \((i, j)\) 能达到的最右的坐标

\(up[i][j]\) 表示 以 \((i, j)\) 向上达到的 最上坐标, 即悬线的长度

初始化满足条件的每个\(1 * 1\) 小矩阵 \(l[i][j] = r[i][j] = j, up[i][j] = 1\), 即围成一个 \(1 * 1\) 的小小矩形

容易想到维护悬线可以递推, 在满足矩阵限制的条件下, 先初始化

\[l[i][j] = l[i][j - 1]$$ $$r[i][j] = r[i][j + 1]
\]

比对上一行,在满足矩阵限制的条件下, 我们只能取最窄满足条件

\[l[i][j] = max(l[i][j], l[i - 1][j])$$ $$r[i][j] = min(r[i][j], r[i - 1][j])
\]

然后悬线长度可以继承上一行的 $$up[i][j] = up[i - 1][j] + 1$$

有了悬线直接计算围出来的面积即可

Solution

此题求最大交错矩阵

交错矩阵任意相邻两格颜色不同

于是限制条件即为相邻两格颜色不等

放个代码理解 悬线法

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019;
int lenx, leny;
int map[maxn][maxn];
int l[maxn][maxn], r[maxn][maxn];
int up[maxn][maxn];
int ans1, ans2;
void init(){
lenx = RD(), leny = RD();
REP(i, 1, lenx)REP(j, 1, leny){
map[i][j] = RD();
l[i][j] = r[i][j] = j;
up[i][j] = 1;
}
REP(i, 1, lenx)REP(j, 2, leny){
if(map[i][j] != map[i][j - 1])l[i][j] = l[i][j - 1];//预处理左边界
}
REP(i, 1, lenx)for(int j = leny - 1;j >= 1;j--){
if(map[i][j] != map[i][j + 1])r[i][j] = r[i][j + 1];//右边界
}
}
void solve(){
REP(i, 1, lenx)REP(j, 1, leny){
if(i > 1 && map[i][j] != map[i - 1][j]){
l[i][j] = max(l[i][j], l[i - 1][j]);
r[i][j] = min(r[i][j], r[i - 1][j]);
up[i][j] = up[i - 1][j] + 1;
}
int a = r[i][j] - l[i][j] + 1;//宽
int b = min(a, up[i][j]);
ans1 = max(ans1, b * b);
ans2 = max(ans2, a * up[i][j]);
}
printf("%d\n%d\n", ans1, ans2);
}
int main(){
init();
solve();
return 0;
}

P1169 [ZJOI2007]棋盘制作 && 悬线法的更多相关文章

  1. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  2. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  3. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  4. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  5. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  6. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  7. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  8. 【ZJOI2007】棋盘制作 - 悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 \(8 \times 8\) 大小的黑白相间的方阵,对应八八六十四卦 ...

  9. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

随机推荐

  1. PAT L1-027 出租

    https://pintia.cn/problem-sets/994805046380707840/problems/994805107638517760 下面是新浪微博上曾经很火的一张图: 一时间网 ...

  2. Docker(二十)-Docker容器CPU、memory资源限制

    背景 在使用 docker 运行容器时,默认的情况下,docker没有对容器进行硬件资源的限制,当一台主机上运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU.内存和磁盘资源.如果不 ...

  3. 一个简单的Oracle和 SQLSERVER 重建所有表索引的办法

    1. SQLSERVER 使用微软自带的存储过程 exec sp_msforeachtable 'DBCC DBREINDEX(''?'')' 2. Oracle的办法: select 'alter ...

  4. 数组 this.setData快捷赋值

    let list=this.data.list; let listString = `{"list[${index}].sliderSure":${!list[index].sli ...

  5. OA与BPM的区别

      BPM OA 软件架构 JAVA..NET.基于SOA架构 JAVA..NET.PHP.Domino 驱动模式 流程驱动 文档驱动 交互 人与人,人与系统,系统与系统 人与人 软件功能       ...

  6. centos网络yum源的安装

    CentOS使用EPEL YUM源EPEL (Extra Packages for Enterprise Linux)是基于Fedora的一个项目,为“红帽系”的操作系统提供额外的软件包,适用于RHE ...

  7. Java MD5Util

    package util; import java.security.MessageDigest; public class MD5Util {  public static String strin ...

  8. codeforces431B

    Shower Line CodeForces - 431B Many students live in a dormitory. A dormitory is a whole new world of ...

  9. 洛谷 P4294 [WC2008]游览计划

    题目链接 不是很会呢,但似乎抄了题解后有点明白了 sol:状态DP显然,其实是要构建一棵最小生成树一样的东西,我自己的理解(可能不是很对哦希望多多指教)f[x][y][zt]就是到x,y这个点,状态为 ...

  10. Nginx ACCESS阶段 统一的用户权限验证系统

    L59 需要编译到Nginx --with-http_auth_request_module 功能介绍: 主要当收到用户请求的时候 通过反向代理方式生成子请求至上游服务器,如果上游服务器返回2xx 则 ...