04-树4. Root of AVL Tree (25)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the
rotation rules.

    

    

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by
a space.

Output Specification:

For each test case, print ythe root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88
#include <stdio.h>
struct Node {
int val;
int height;
struct Node *left;
struct Node *right;
};
int max(int a, int b) { //返回两者较大者
return a > b ? a : b;
}
int height(struct Node* root) { //为了兼容空树,树高度不能直接返回根节点的height属性
if (root == NULL) {
return -1;
}
else {
return root->height;
}
}
struct Node* RRrotation(struct Node* k1) { //右右旋转
struct Node* k2 = k1->right; //k2为根节点k1的右儿子
k1->right = k2->left; //将k2的左儿子连接到k1的右子节点
k2->left = k1; //将k1连接到k2的左子节点
k1->height = max(height(k1->left), height(k1->right)) + 1; //更新节点高度,仅仅有k1,k2节点高度变化
k2->height = max(height(k2->left), height(k2->right)) + 1;
return k2;
}
struct Node* LLrotation(struct Node* k1) { //左左旋转
struct Node* k2 = k1->left;
k1->left = k2->right;
k2->right = k1;
k1->height = max(height(k1->left), height(k1->right)) + 1;
k2->height = max(height(k2->left), height(k2->right)) + 1;
return k2;
}
struct Node* RLrotation(struct Node* k1) { //右左旋转
//分两步:先对根节点的右子树做左左旋转。再对根做右右旋转
k1->right = LLrotation(k1->right);
return RRrotation(k1);
}
struct Node* LRrotation(struct Node* k1) { //左右旋转
k1->left = RRrotation(k1->left);
return LLrotation(k1);
}
struct Node* insertAvlTree(struct Node* node, struct Node* root) {
if (root == NULL) {
root = node;
return root;
}
if (node->val > root->val) {
root->right = insertAvlTree(node, root->right); //插入右子树
if (height(root->right) - height(root->left) == 2) {
if (node->val > root->right->val) { //假设插入右子树的右子树,进行右右旋转
root = RRrotation(root);
}
else if (node->val < root->right->val) { //进行右左旋转
root = RLrotation(root);
}
}
}
else if (node->val < root->val) { //插入左子树情况与上面相似
root->left = insertAvlTree(node, root->left);
if (height(root->left) - height(root->right) == 2) {
if (node->val < root->left->val) {
root = LLrotation(root);
}
else if(node->val > root->left->val) {
root = LRrotation(root);
}
}
}
//递归中不断更新插入节点到根节点路径上全部节点的高度
root->height = max(height(root->left), height(root->right)) + 1;
return root;
}
int main() {
freopen("test.txt", "r", stdin);
int n;
scanf("%d", &n);
struct Node nodes[20];
struct Node *root = NULL;
for (int i = 0; i < n; ++i) { //初始化一个节点。并插入AVL树中
scanf("%d", &nodes[i].val);
nodes[i].height = 0; //孤立的节点高度为0
nodes[i].left = NULL;
nodes[i].right = NULL;
root = insertAvlTree(&nodes[i], root);
}
printf("%d", root->val);
return 0;
}

题目链接:http://www.patest.cn/contests/mooc-ds/04-%E6%A0%914

04-树4. Root of AVL Tree (25)的更多相关文章

  1. pat04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  2. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  3. PTA 04-树5 Root of AVL Tree (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree   (25分) An AVL tree ...

  4. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  5. pat1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  6. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  7. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  9. PAT 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. 长沙理工大学第十二届ACM大赛-重现赛 K - 大家一起来数二叉树吧

    题目描述 某一天,Zzq正在上数据结构课.老师在讲台上面讲着二叉树,zzq在下面发着呆. 突然zzq想到一个问题:对于一个n个节点,m个叶子的二叉树,有多少种形态呐?你能告诉他吗? 对于第一组样例的解 ...

  2. java 错误:无法找到或装入主类

    1. 删除找不到的jar 2. 删除src以外的文件夹

  3. Xamarin.Forms教程开发的Xcode的下载安装

    Xamarin.Forms教程开发的Xcode的下载安装 Xamarin.Forms教程开发的Xcode的下载安装,Xcode是开发iOS应用程序的图形化开发工具.本节将讲解Xamarin.Forms ...

  4. Unity 2D游戏开发教程之游戏精灵的开火状态

    Unity 2D游戏开发教程之游戏精灵的开火状态 精灵的开火状态 “开火”就是发射子弹的意思,在战争类型的电影或者电视剧中,主角们就爱这么说!本节打算为精灵添加发射子弹的能力.因为本游戏在后面会引入敌 ...

  5. 简单机器学习人脸识别工具face-recognition python小试,一行代码实现人脸识别

    摘要: 1行代码实现人脸识别,1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片.其中每个人一张图片,图片以人的名字命名.2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片.3 ...

  6. MySQL 之 多表查询

    一.多表联合查询 #创建部门CREATE TABLE IF NOT EXISTS dept ( did int not null auto_increment PRIMARY KEY, dname V ...

  7. FastReport.Net使用:[36]"续表"

    1. RepeatedBand的打印和子报表的使用. RepeatedBand实现方法:设置Band为每页重复.注意,从第二次打印开始,就是重复打印了.第一次打印不认为是RepeatedBand. 报 ...

  8. 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)

    2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...

  9. Linux下burg引导

    用得比较久了,比grub顺手: 安装: sudo add-apt-repository ppa:n-muench/burg; sudo apt-get update; sudo apt-get ins ...

  10. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...