Area

Description
Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
The first line contains the number of scenarios.
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0
Scenario #2:
12 16 19.0

题目大意:

    给一个平面上的简单多边形,求边上的点,多边形内的点,多边形面积。

解题思路:

    Pick定理和叉积求多边形的面积。

    Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积。

     多边形面积:

1) △ABC的面积为向量AB与向量AC的叉乘的一半。

2)对于一个多边形,选定一个顶点P1,与其他顶点连线,可将多边形分为若干个三角形。

3)多边形面积为 abs(Sum{CrossMul(A,B,P1)|A,B为相邻的两个顶点}) (先求和再取abs,否则对于凹多边形会出错)

    求在边上的顶点数:

      对于Pa(x1,y1),Pb(x2,y2)所连成的选段,经过的格点的个数为Gcd(abs(x1-x2),abs(y1-y2))+1.

Code:

 #include<stdio.h>
#include<cmath>
#include<iostream>
#include<algorithm>
#define MAXN 10000
using namespace std;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int TeaTable(int x1,int y1,int x2,int y2)
{
return x1*y2-x2*y1;
}
int main()
{
int T,times=;
cin>>T;
while (T--)
{
times++;
int N;
cin>>N;
int area=;
int x=,y=,dx=,dy=;
int cnt=;
for (int i=;i<=N;i++)
{
int tx,ty;
cin>>tx>>ty;
dx=x+tx,dy=y+ty;
cnt+=gcd(abs(tx),abs(ty));
area+=TeaTable(x,y,dx,dy);
x=dx,y=dy;
}
area=area>?area:-area;
double ans3=(double)area/2.0;
int ans2=cnt;
int ans1=(area+-ans2)/;
printf("Scenario #%d:\n",times);
printf("%d %d %.1lf\n\n",ans1,ans2,ans3);
} return ;
}

POJ1265——Area(Pick定理+多边形面积)的更多相关文章

  1. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  2. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  3. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

  4. Area(pick定理)

    http://poj.org/problem?id=1265 题意:起始为(0,0),给出每个点的偏移量,求依次连接这些点形成的多边形边界上格点的个数. 思路:先将各个点的坐标求出存入,由pick定理 ...

  5. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  6. Area(Pick定理POJ1256)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5429   Accepted: 2436 Description ...

  7. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

  8. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  9. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

随机推荐

  1. 浅谈css中的position属性

    我觉得吧,css如果不考虑浏览器的兼容问题的话,最让人头疼的应该就是position了,反正我是这么觉得的,为了能基本上搞清楚position的几种情况,我找了一些资料,做了一个小实验,下面是实验的过 ...

  2. flex&bison 1

    .   {ECHO;}-----单独的flex使用中有效 .   { yyerror();}--------flex和bison交叉使用,即使不调用yyerror函数,也会报错的 error: syn ...

  3. poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存 ...

  4. XML解析之PULL

    在Android中极力推荐的xmlpull方式解析xml. 为什么 STAX 解析方式 效率 好于 SAX ? 1.SAX 无选择性的,所有事件都会处理 解析方式,Stax 由用户控制需要处理事件类型 ...

  5. sql server返回插入数据表的id,和插入时间

    假设要插入数据的数据表结构如下

  6. 分享php中四种webservice实现的简单架构方法及实例[转载]

    [转载]http://www.itokit.com/2012/0417/73615.html 本人所了解的webservice有以下几种:PHP本身的SOAP,开源的NUSOAP,商业版的PHPRPC ...

  7. 百度地图API实现多区域标记

    最近遇到一个业务就是需要需要在地图上标记多个区域.一般餐饮业做外卖的,配送范围一般是多区域的,那么在地图上标记配送范围的时候就需要能标记多个区域.长话短说,最初的实现原型的截图如下:

  8. Kakfa揭秘 Day2 Kafka内核再揭秘

    Spark Streaming揭秘 Day33 Kafka内核再揭秘 优秀的框架会把引擎做到极致,Kafka就是这样,让我们再深入一下研究. 设计目标 kafka系统有着比较独特的的设计,包括5点: ...

  9. Python-Day1 Python基础学习

    一.Python3.5.X安装 1.Windows Windows上找度娘搜索“Python for windows下载”就OK了,安装的时候可以勾选设置环境变量,也可以安装完手动设置,这样在cmd中 ...

  10. hdu 5343 MZL's Circle Zhou SAM

    MZL's Circle Zhou 题意:给定两个长度不超过a,b(1 <= |a|,|b| <= 90000),x为a的连续子串,b为y的连续子串(x和y均可以是空串):问x+y形成的不 ...