Area

Description
Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
The first line contains the number of scenarios.
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0
Scenario #2:
12 16 19.0

题目大意:

    给一个平面上的简单多边形,求边上的点,多边形内的点,多边形面积。

解题思路:

    Pick定理和叉积求多边形的面积。

    Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积。

     多边形面积:

1) △ABC的面积为向量AB与向量AC的叉乘的一半。

2)对于一个多边形,选定一个顶点P1,与其他顶点连线,可将多边形分为若干个三角形。

3)多边形面积为 abs(Sum{CrossMul(A,B,P1)|A,B为相邻的两个顶点}) (先求和再取abs,否则对于凹多边形会出错)

    求在边上的顶点数:

      对于Pa(x1,y1),Pb(x2,y2)所连成的选段,经过的格点的个数为Gcd(abs(x1-x2),abs(y1-y2))+1.

Code:

 #include<stdio.h>
#include<cmath>
#include<iostream>
#include<algorithm>
#define MAXN 10000
using namespace std;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int TeaTable(int x1,int y1,int x2,int y2)
{
return x1*y2-x2*y1;
}
int main()
{
int T,times=;
cin>>T;
while (T--)
{
times++;
int N;
cin>>N;
int area=;
int x=,y=,dx=,dy=;
int cnt=;
for (int i=;i<=N;i++)
{
int tx,ty;
cin>>tx>>ty;
dx=x+tx,dy=y+ty;
cnt+=gcd(abs(tx),abs(ty));
area+=TeaTable(x,y,dx,dy);
x=dx,y=dy;
}
area=area>?area:-area;
double ans3=(double)area/2.0;
int ans2=cnt;
int ans1=(area+-ans2)/;
printf("Scenario #%d:\n",times);
printf("%d %d %.1lf\n\n",ans1,ans2,ans3);
} return ;
}

POJ1265——Area(Pick定理+多边形面积)的更多相关文章

  1. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  2. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  3. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

  4. Area(pick定理)

    http://poj.org/problem?id=1265 题意:起始为(0,0),给出每个点的偏移量,求依次连接这些点形成的多边形边界上格点的个数. 思路:先将各个点的坐标求出存入,由pick定理 ...

  5. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  6. Area(Pick定理POJ1256)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5429   Accepted: 2436 Description ...

  7. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

  8. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  9. POJ 1265 Area (pick定理)

    题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...

随机推荐

  1. main与进程 线程

    你起一个CS游戏,这上CS游戏在操作系统中就是一个进程. 但是这个游戏一边在打枪,一边人在走动,一边还有音乐 ,打枪 , 走动 , 音乐 等都是一些线程. 线程不是由进程决定了. 也就是说:你在操作系 ...

  2. ssh 登陆指定 验证文件

    当前用户jim ssh-keygen -t rsa 生成密钥 把pub结尾的公用密钥数据追加到192.168.1.3上的 /home/tom/.ssh/authKeys(文件名可能不一样) ssh - ...

  3. Linq一对多联合查询

    问题: 学生表,班级表,我要班级下面学生 A表,字段:AID,CLASSB表,字段 :BID,BNAME,AIDA表数据1 班级12 班级2B表数据1 学生1 12 学生2 1 3 学生3 24 学生 ...

  4. XML节点处理

    XmlDocument xmlDoc = new XmlDocument(); if (!File.Exists(xmlFileName)) { return string.Empty; } xmlD ...

  5. html5画图和本地存储

    <!DOCTYPE HTML><html><body> <canvas id="myCanvas" width="200&quo ...

  6. 伪元素content的应用

    日常开发中,我们常用:before,:after来实现一些效果,比如 – 边框 – 图标 此时的content中只是为了伪元素能渲染出来而声明 1 2 3 div:before{ content: & ...

  7. c# 判断点是否在区域内 点在区域内 在多边形内 判断

    方法一 算法 : public int isLeft(Point P0, Point P1,Point P2)        {            int abc= ((P1.X - P0.X) ...

  8. (转载)用SQL语句创建Access表

    <来源网址:http://www.delphifans.com/infoview/Article_220.html>用SQL语句创建Access表 很久以前弄的,用了一天的时间,没有什么技 ...

  9. ItemsControl 使用Grid布局

    ItemsControl控件经常用到,在ItemsPanel里大多是StackPanel,WrapPanel,以下项目演示如何使用Grid用于ItemsControl布局 1.先看运行效果 2.xam ...

  10. Have Fun with Numbers (大数)

    Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, wit ...