BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)
Time Limit: 10 Sec Memory Limit: 256 MBSec Special Judge
Submit: 2030 Solved: 986
[Submit][Status][Discuss]
Description
Input
第一行有两个整数,N和 M,描述方块的数目。
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。
Output
由 N + 1行组成。第一行为一个整数,表示你所给出的方案
中安排的志愿者总数目。
接下来 N行,每行M 个字符,描述方案中相应方块的情况:
z ‘_’(下划线)表示该方块没有安排志愿者;
z ‘o’(小写英文字母o)表示该方块安排了志愿者;
z ‘x’(小写英文字母x)表示该方块是一个景点;
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。
Sample Input
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0
Sample Output
xoox
___o
___o
xoox
HINT
对于100%的数据,N,M,K≤10,其中K为景点的数目。输入的所有整数均在[0,2^16]的范围内
Source
$f[i][j][sta]$表示$(i,j)$这个位置,与其他景点的连通性为$sta$时的最小花费
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int limit = ;
const int INF = 1e9;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') {x = x * + c - ''; c = getchar();}
return x * f;
}
#define MP(i,j) make_pair(i,j)
#define se second
#define fi first
#define Pair pair<int,int>
int N, M, tot = ;
int a[][], f[][][limit];
int xx[] = {-, +, , };
int yy[] = {, , -, +};
int vis[][];
struct PRE {
int x, y, S;
}Pre[][][limit];
queue<Pair>q;
void SPFA(int cur) {
while(q.size() != ) {
Pair p = q.front();q.pop();
vis[p.fi][p.se] = ;
for(int i = ; i <; i++) {
int wx = p.fi + xx[i], wy = p.se + yy[i];
if(wx < || wx > N || wy < || wy > M) continue;
if(f[wx][wy][cur] > f[p.fi][p.se][cur] + a[wx][wy]) {
f[wx][wy][cur] = f[p.fi][p.se][cur] + a[wx][wy];
Pre[wx][wy][cur] = (PRE){p.fi, p.se, cur};
if(!vis[wx][wy])
vis[wx][wy] = , q.push(MP(wx,wy));
}
}
}
}
void dfs(int x, int y, int now) {
vis[x][y] = ;
PRE tmp = Pre[x][y][now];
if(tmp.x == && tmp.y == ) return;
dfs(tmp.x, tmp.y, tmp.S);
if(tmp.x == x && tmp.y == y) dfs(tmp.x, tmp.y, now - tmp.S);
}
int main() {
N = read(); M = read();
memset(f, 0x3f, sizeof(f));
for(int i = ; i <= N; i++)
for(int j = ; j <= M; j++) {
a[i][j] = read();
if(a[i][j] == )
f[i][j][ << tot] = , tot++;
}
int limit = ( << tot) - ;
for(int sta = ; sta <= limit; sta++) {
for(int i = ; i<= N; i++)
for(int j = ; j <= M;j++) {
for(int s = sta & (sta - ); s; s = (s - ) & sta) {
if(f[i][j][s] + f[i][j][sta - s] - a[i][j] < f[i][j][sta])
f[i][j][sta] = f[i][j][s] + f[i][j][sta - s] - a[i][j],
Pre[i][j][sta] = (PRE){i,j,s};
}
if(f[i][j][sta] < INF) q.push(MP(i,j)), vis[i][j] = ;
}
SPFA(sta);
}
int ansx, ansy, flag = ;
for(int i = ; i <= N && !flag; i++)
for(int j = ; j <= M; j++)
if(!a[i][j])
{ansx = i, ansy = j; flag = ; break;}
printf("%d\n",f[ansx][ansy][limit]);
memset(vis, , sizeof(vis));
dfs(ansx, ansy, limit);
for(int i = ; i <= N; i++, puts("")) {
for(int j = ; j <= M; j++) {
if(a[i][j] == ) putchar('x');
else if(vis[i][j]) putchar('o');
else putchar('_');
}
}
return ;
}
BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)的更多相关文章
- bzoj2595 [Wc2008]游览计划——斯坦纳树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...
- bzoj2595: [Wc2008]游览计划 斯坦纳树
斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
- 【BZOJ2595】[Wc2008]游览计划 斯坦纳树
[BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...
- Luogu 4294 [WC2008]游览计划 | 斯坦纳树
题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...
- 【BZOJ-2595】游览计划 斯坦纳树
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1518 Solved: 7 ...
- BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树
[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...
- P4294 [WC2008]游览计划 (斯坦纳树)
题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
随机推荐
- React Native常用组件样式总结
在react 中,有时要使用 style 指定样式 ,如要跟随放大比例关系,展示图标. const stylebutton = {width:25*scalesize, height:25*scale ...
- RabbitMQ,Windows环境下安装搭建
切入正题:RabbitMQ的Windows环境下安装搭建 一.首先安装otp_win64_20.1.exe,,, 二.然后安装,rabbitmq-server-3.6.12.exe, 安装完成后,在服 ...
- 180217_JAVA学习_TreeSet中存放含多个String的类并设置排序规则
有Person类如下: class Person { String name; int age; String address; } 有main如下: import java.util.TreeSet ...
- Java设计模式----观察者模式详解
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/3 ...
- LeetCode题解之Single Number
1.题目描述 2.分析 3.代码 int singleNumber(vector<int>& nums) { map<int,int> m; for( vector&l ...
- 32位Windows7 利用多余的不能识别的电脑内存 RAMDISK5.5教程
32位Windows7 利用多余的不能识别的电脑内存 RAMDISK5.5教程 环境:Windows7 32位 Ultimate 内存8GB 只能识别2.95GB内存 ramdisk5.5只适用于Wi ...
- 在 Linux 上创建虚拟机规模集和部署高度可用的应用
利用虚拟机规模集,可以部署和管理一组相同的.自动缩放的虚拟机. 可以手动缩放规模集中的 VM 数,也可以定义规则,以便根据资源使用情况(如 CPU 使用率.内存需求或网络流量)进行自动缩放. 在本教程 ...
- [翻译] M13ProgressSuite
M13ProgressSuite https://github.com/Marxon13/M13ProgressSuite A set of classes used to display progr ...
- Linux chown命令详解
chown将指定文件的拥有者改为指定的用户或组,用户可以是用户名或者用户ID:组可以是组名或者组ID:文件是以空格分开的要改变权限的文件列表,支持通配符. chown常见命令参数 Usage: cho ...
- HTML基础标签的综合应用案例(颜色、斜体、加粗、下划线、a标签、无序列表、有序列表)
什么是HTML l HTML(HyperText Mark-up Language)即超文本标记语言或超文本标签语言. l 何为超文本:“超文本”可以实现页面内可以包含图片.链接,甚至音乐.程序等. ...