本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题。主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separation),最小I-Maps(Minimal I-Maps)等。主要参考Nir Friedman的相关PPT。

1  概率分布(Probability Distributions)

令X1,...,Xn表示随机变量;令P是X1,...,Xn的联合分布(joint distribution)。如果每个变量均可有两种取值(0-1分布),那么最终我们将得到2^n种取值,也就是说,我们需要用2^n个变量来描述P的分布。

2 随机变量的独立性

如果随机变量X和Y相互独立(independent),那么:

1)P(X=x|Y=y)=p(X=x),对于所有的x和y均成立;2)也就是说,随机变量Y的取值(或者说随机事件Y是否发生),不影响X。

3)P(X,Y)=P(X|Y)*P(Y)=P(X)*P(Y);

推广,如果X1,。。。,Xn独立,那么:

P(X1,,,,,Xn)=P(X1)...P(Xn),共需O(n)个参数。

3 条件独立(Conditional Independence)

上述独立的情况比较理想,不幸的是,现实中大多数我们感兴趣的随机变量都不是相互独立的。更加常见的假设是条件独立。两个随机变量X和Y对于给定条件Z条件独立,如果:

P(X=x|Y=y,Z=z) = P(X=x|Z=z),对于所有随机变量取值x,y,z均成立。

也就是说,当我们知道Z的取值时,Y的取值不影响X的预测。记为Ind(X;Y|Z)

4 马尔科夫假设(Markov Assumption)

马尔科夫假设是针对有向无环图做的更清晰的独立性假设。对于图G中的任意一个节点X,X代表一个随机变量,在给定X的父节点集Par(X)的情况下,X和X的所有非子节点相互独立。一般记作Ind(X;NonDesc(x)|Par(x))。这也称作变量的局部马尔科夫性。实例见下图:

5 I-Maps

一个有向无环图G是分布P的一个I-Map当对G的所有马尔科夫假设也适合于对P(假设G和P均具有相同的随机变量)。这是从有向无环图到概率公式推理的基础。

6 分解 Factorization

如果G是P的一个I-Map,那么我们能简化P的表示么?

例如,对于随机变量X和Y,如果Ind(X;Y),我们可以知道:P(X|Y)=P(X)。

根据链式法则(Chain Rules),我们知道:P(X,Y)=P(X|Y)*P(Y)=P(X)*P(Y)。

这样,我们就将P(X,Y)简化成为P(X)*P(Y)的形式。

7 分解定理

如果G是P的一个I-Map,那么:

8 最小I-Map, Minimal I-Map

一个有向无环图G是P的一个最小I-Map当:G是P的一个I-Map;如果G‘是G的子图,那么G’不是P的I-Map。

9 d-separated 有向分割

d-separated这个概念是由Judea Pearl于1988年提出的算法的名字。这个算法是用来衡量图中的所有的条件独立关系。

令X, Y和Z是一个有向无环图 G中二个不相 交节点的子集,如果在集合X和Y中所有节点间的所有路径都被集合Z所 阻塞,则称集合X和Y被Z集合d-s eparation。

也称Z 为X和Y的切割集。否则,称在给定集合Z下集合X和Y依赖。

那么,什么时候称点集X和Y中所有节点间的路径被点集Z阻塞呢?如下图所示:

1.每条从A中的变量(顶点)到B中变量(顶点)的路径都经过集合Z,则称Z分开了点集A和B;

2.Z阻塞了从A到B的所有路径。

10 信息理论

增加这个定义的原因是因为评价概率模型时常常要用到,作为笔记留作查阅。

11.扩展阅读

图模型的介绍

An introduction to graphical models,Kevin P. Murphy

关于图模型的课程:课件以书的形式给出,易读

Statistical Learning Theory,berkeley CS281A

http://www.cs.berkeley.edu/~jordan/courses/281A-fall02/

更多的tutorials

http://www.cs.ubc.ca/~murphyk/

http://research.microsoft.com/~cmbishop/talks.htm

http://research.microsoft.com/~heckerman/

http://www.autonlab.org/tutorials/

http://www.cs.berkeley.edu/~jordan/tutorials.html

一些工具/源代码

Intel Probabilistic Network Library:C++

www.intel.com/technology/computing/pnl/index.htm

Jie Cheng :KDDCup01的优胜者

http://www.cs.ualberta.ca/~jcheng/

Matlab工具:http://prdownloads.sourceforge.net/bnt/

PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)的更多相关文章

  1. 大数据工作流任务调度--有向无环图(DAG)之拓扑排序

    点击上方蓝字关注DolphinScheduler(海豚调度) |作者:代立冬 |编辑:闫利帅 回顾基础知识: 图的遍历 图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点 ...

  2. 【学习笔记】有向无环图上的DP

    手动博客搬家: 本文发表于20180716 10:49:04, 原地址https://blog.csdn.net/suncongbo/article/details/81061378 首先,感谢以下几 ...

  3. C#实现有向无环图(DAG)拓扑排序

    对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在 ...

  4. 【模板整合计划】图论—有向无环图 (DAG) 与树

    [模板整合计划]图论-有向无环图 (DAG) 与树 一:[拓扑排序] 最大食物链计数 \(\text{[P4017]}\) #include<cstring> #include<cs ...

  5. 判断有向无环图(DAG)

    1.拓扑排序 bfs 所有入度为0的先入选. 2.tarjan 1个点1个集合 3.暴力 一个点不能重新到达自己

  6. [笔记] 有向无环图 DAG

    最小链覆盖 (最长反链) 最小链覆盖 \(=n-\) 最大匹配. 考虑首先每个点自成一条链,此时恰好有 \(n\) 条链,最终答案一定是合并(首尾相接)若干条链形成的. 将两点匹配的含义其实就是将链合 ...

  7. PGM:有向图模型:贝叶斯网络

    http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值 ...

  8. PGM学习之五 贝叶斯网络

    本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships) ...

  9. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

随机推荐

  1. Sklearn环境搭建与常用包

    开发环境搭建 直接安装Anaconda IPython IPython是公认的现代科学计算中最重要的Python工具之一.它是一个加强版的Python交互命令行工具,有以下几个明显的特点: 1. 可以 ...

  2. 用xpo实现dc技术的关键点-XPO是如何处理接口类型与真实类型的对应关系的

    https://www.devexpress.com/Support/Center/Question/Details/Q487000/xpodatamodel-and-model-interfaces ...

  3. 分享一个DataTable转List强类型的类库

    类库扩展自Datatable,可以直接用Datatable.ToList<T>()进行转换.为了方便把DataReader装入Datatable,开扩展了一个LoadForReader(t ...

  4. python的类和对象2(self参数)

    python的类和对象2(self参数) 1.python里面对象的方法都会有self参数,它就相当于C++里面的this指针:绑定方法,据说有了这个参数,Python 再也不会傻傻分不清是哪个对象在 ...

  5. 关于kafka的一些问题理解

  6. 【坚持】Selenium+Python学习之从读懂代码开始 DAY4

    2018/05/21 [生成器详解:廖雪峰的官方网站](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d ...

  7. Netty源码分析第5章(ByteBuf)---->第6节: 命中缓存的分配

    Netty源码分析第6章: ByteBuf 第六节: 命中缓存的分配 上一小节简单分析了directArena内存分配大概流程, 知道其先命中缓存, 如果命中不到, 则区分配一款连续内存, 这一小节带 ...

  8. HTML(2)普通文本的修饰

    段落标签 <p> 我们使用<p>...</p>标签来标记一个段落,两个段落之间会自动换行.需要注意的是,在书写HTML时,连续的空格只被看作一个空格,如果需要插入空 ...

  9. Class-dump 安装和使用记录(导出应用的头文件)

    class-dump算是逆向工程中一个入门级的工具,可以很方便的导出程序头文件,可以轻松的了解程序结构方便逆向.安装包下载地址:http://stevenygard.com/projects/clas ...

  10. java_web连接SQL_server详细步骤

    (1).我用的是Myeclipse,可以直接将sqljdbc4.jar拷到项目文件 (2).点开SQL Server配置管理器 选中SQL Server2008网络配置下的SQLEXPRESS的协议, ...