题目描述

在首尔城中,汉江横贯东西。在汉江的北岸,从西向东星星点点地分布着 NNN 个划艇学校,编号依次为 111 到 NNN。每个学校都拥有若干艘划艇。同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同。颜色相同的划艇被认为是一样的。每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加。如果编号为 iii 的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在 aia_ia​i​​ 至 bib_ib​i​​ 之间任意选择(ai≤bia_i \leq b_ia​i​​≤b​i​​)。

值得注意的是,编号为 iii 的学校如果选择派出划艇参加庆典,那么它派出的划艇数量必须大于任意一所编号小于它的学校派出的划艇数量。

输入所有学校的 ai,bia_i,b_ia​i​​,b​i​​ 的值,求出参加庆典的划艇有多少种可能的情况,必须有至少一艘划艇参加庆典。两种情况不同当且仅当有参加庆典的某种颜色的划艇数量不同。

输入输出格式

输入格式:

第一行包括一个整数 NNN,表示学校的数量。

接下来 NNN 行,每行包括两个正整数,用来描述一所学校。其中第 iii 行包括的两个正整数分别表示 ai,bia_i,b_ia​i​​,b​i​​(1≤ai≤bi≤1091 \leq a_i \leq b_i \leq 10^91≤a​i​​≤b​i​​≤10​9​​)。

输出格式:

输出一行,一个整数,表示所有可能的派出划艇的方案数除以 1,000,000,0071,000,000,0071,000,000,007 得到的余数。

输入输出样例

输入样例#1:

2
1 2
2 3
输出样例#1:

7

说明

【样例解释】

在只有一所学校派出划艇的情况下有 444 种方案,两所学校都派出划艇的情况下有 333 种方案,所以答案为 777。

【数据范围】

子任务 111(999 分):1≤N≤5001 \leq N \leq 5001≤N≤500 且对于所有的 1≤i≤N1 \leq i \leq N1≤i≤N,保证 ai=bia_i=b_ia​i​​=b​i​​。

子任务 222(222222 分):1≤N≤5001 \leq N \leq 5001≤N≤500 且 ∑i=1N(bi−ai)≤106\sum_{i=1}^N (b_i-a_i) \leq 10^6∑​i=1​N​​(b​i​​−a​i​​)≤10​6​​。

子任务 333(272727 分):1≤N≤1001 \leq N \leq 1001≤N≤100。

子任务 444(424242 分):1≤N≤5001 \leq N \leq 5001≤N≤500。

http://m.blog.csdn.net/qq_22541499/article/details/51674707这个博客说的很清楚

组合数部分很难理解,建议手推一下

很玄学的是我用数组排序判重离散WA
改成STL set就AC了,回头还要改一下
已改完,为二分错误
以防万一,以后遇到一些奇怪的二分还是用upper_bound
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int Mod=;
typedef long long lol;
lol A[],f[][],len[];
lol a[],b[],ge[],n,cnt;
int main()
{lol i,j,k;
cin>>n;
A[]=;
for (i=;i<=n;i++)
{
A[i]=(Mod-Mod/i)*A[Mod%i]%Mod;
}
for (i=;i<=n;i++)
{
scanf("%lld%lld",&a[i],&b[i]);
ge[i]=a[i];ge[n+i]=b[i]+;
}
sort(ge+,ge+*n+);
for (i=;i<*n;i++)
{
if (ge[i]==ge[i+])
ge[i]=2e9;
}
sort(ge+,ge+*n+);
cnt=*n;
while (ge[cnt]==2e9) cnt--;
for (i=;i<=n;i++)
{
a[i]=upper_bound(ge,ge+cnt+,a[i])-ge;
b[i]=upper_bound(ge,ge+cnt+,b[i])-ge;
//cout<<a[i]<<' '<<b[i]<<endl;
}
for (i=;i<=cnt;i++)
{
f[][i]=;
if (i)
len[i]=ge[i]-ge[i-];
}
for (i=;i<=n;i++)
{
f[i][]=;
for (j=a[i];j<=b[i];j++)
{
f[i][j]=(f[i-][j-]*len[j])%Mod;
lol c=len[j]-,now=;
for (k=i-;k;k--)
{
if (j>=a[k]&&j<=b[k])
{
now++;
c=((c*(len[j]+now-)%Mod)*A[now])%Mod;
if (!c) break;
f[i][j]+=(f[k-][j-]*c)%Mod;
f[i][j]%=Mod;
}
}
}
for (j=;j<=cnt;j++)
{
f[i][j]=(f[i][j]+f[i-][j]+f[i][j-]-f[i-][j-]+Mod)%Mod;
}
}
cout<<(f[n][cnt]-+Mod)%Mod;
}

[APIO2016]划艇的更多相关文章

  1. [洛谷P3643] [APIO2016]划艇

    洛谷题目链接:[APIO2016]划艇 题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 \(N\) 个划艇学校,编号依次为 \(1\) 到 \(N\).每个学校都拥有若干艘 ...

  2. P3643 [APIO2016]划艇

    P3643 [APIO2016]划艇 题意 一个合法序列可表示为一个长度为 \(n\) 的序列,其中第 \(i\) 个数可以为 0 或 \([l_i,r_i]\) 中一个整数,且满足所有不为零的数组成 ...

  3. BZOJ4584 & 洛谷3643 & UOJ204:[APIO2016]划艇——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4584 https://www.luogu.org/problemnew/show/P3643 ht ...

  4. 题解 P3643 [APIO2016]划艇

    题解 一种思路很好想:\(f_{i,j}\) 表示前 \(i\) 所学校中,第 \(i\) 所学校参赛且派出 \(j\) 艘划艇的方案数.(转移就不列了.) 这种方式有一个致命点,就是 \(j\) 的 ...

  5. 洛谷 P3643 - [APIO2016]划艇(dp)

    题面传送门 一道难度中等的 \(dp\)(虽然我没有想出来/kk). 首先一眼 \(dp_{i,j}\) 表示考虑到第 \(i\) 个学校,第 \(i\) 个学校派出了 \(j\) 个划艇的方案数,转 ...

  6. 洛谷P3643 [APIO2016]划艇(组合数学)

    题面 传送门 题解 首先区间个数很少,我们考虑把所有区间离散化(这里要把所有的右端点变为\(B_i+1\)代表的开区间) 设\(f_{i,j}\)表示考虑到第\(i\)个学校且第\(i\)个学校必选, ...

  7. [组合][DP]luogu P3643 [APIO2016]划艇

    题面 https://www.luogu.com.cn/problem/P3643 对于一个序列,第i项可取的值在{0}∪[ai,bi]之间,求使序列非零部分单调递增的方案数 分析 设 $f[i][j ...

  8. Codeforces Educational Round 81 解题报告

    前置扯淡 赛前:这场\(Div2\)呀,那我写\(3\)题就行,\(D\)题尽力就好 赛中:啊啊,\(ABC\)我全过了\(pretest\),我太强了!!这把上蓝稳了 赛后:\(woc\),为啥被\ ...

  9. 5.23考试总结(NOIP模拟2)

    5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...

随机推荐

  1. 听翁恺老师mooc笔记(16)--程序设计与C语言

    问题1:计算机遍布生活的各个方面,若你需要一个功能可以下载APP,我们需要的大部分功能都可以找到对应的APP,如果没有可以自己写一个软件,但是很少人需要这么做,那么我们为什么学习计算机编程语言? 学习 ...

  2. 关于python词典(Dictionary)的get()用法

    先贴出参考链接:http://www.runoob.com/python/att-dictionary-get.html get()方法语法: dict.get(key, default=None) ...

  3. 团队作业7——第二次项目冲刺(Beta版本12.10)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...

  4. JAVA的循环控制与循环嵌套

    循环控制和循环嵌套 循环控制是除了循环条件之外,控制循环是否进行的一个机制,这给处理循环问题带来了灵活性.循环体内的语句块可以是顺序执行的语句,可以是分支结构的语句,也可以是循环语句,循环中含循环,就 ...

  5. nyoj 疯牛

    疯牛 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小 ...

  6. nyoj 对决

    对决 时间限制:1000 ms  |  内存限制:65535 KB 难度:0   描述 Topcoder 招进来了 n 个新同学,Yougth计划把这个n个同学分成两组,要求每组中每个人必须跟另一组中 ...

  7. UTF-8 UTF-16 UTF-32 最根本的区别?

    昨天看书的时候突然发现UTF-16 我好像还没见过这个东西  也可能忘记了 反正现在对自己科普一下吧 最根本的区别 UTF-32 把所有的字符都用32bit -- 4个字节 来表示 UTF-16 和 ...

  8. linux——网络基础

    装完linux系统要对网络(ip地址,子网掩码,网关,DNS)进行配置,才能连接网络 一,开启网卡eth0 CentOS显示没有网卡(eth0) 2.设置静态IP vim /etc/sysconfig ...

  9. WebApi 的三种寄宿方式 (一)

    最近逛博客园,看到了Owin,学习了一下,做个笔记,说不定将来哪天就用上了 关于 Owin 的介绍,百度解释的很清楚了: https://baike.baidu.com/item/owin/28607 ...

  10. Netty事件监听和处理(下)

    上一篇 介绍了事件监听.责任链模型.socket接口和IO模型.线程模型等基本概念,以及Netty的整体结构,这篇就来说下Netty三大核心模块之一:事件监听和处理. 前面提到,Netty是一个NIO ...