题目描述

在首尔城中,汉江横贯东西。在汉江的北岸,从西向东星星点点地分布着 NNN 个划艇学校,编号依次为 111 到 NNN。每个学校都拥有若干艘划艇。同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同。颜色相同的划艇被认为是一样的。每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加。如果编号为 iii 的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在 aia_ia​i​​ 至 bib_ib​i​​ 之间任意选择(ai≤bia_i \leq b_ia​i​​≤b​i​​)。

值得注意的是,编号为 iii 的学校如果选择派出划艇参加庆典,那么它派出的划艇数量必须大于任意一所编号小于它的学校派出的划艇数量。

输入所有学校的 ai,bia_i,b_ia​i​​,b​i​​ 的值,求出参加庆典的划艇有多少种可能的情况,必须有至少一艘划艇参加庆典。两种情况不同当且仅当有参加庆典的某种颜色的划艇数量不同。

输入输出格式

输入格式:

第一行包括一个整数 NNN,表示学校的数量。

接下来 NNN 行,每行包括两个正整数,用来描述一所学校。其中第 iii 行包括的两个正整数分别表示 ai,bia_i,b_ia​i​​,b​i​​(1≤ai≤bi≤1091 \leq a_i \leq b_i \leq 10^91≤a​i​​≤b​i​​≤10​9​​)。

输出格式:

输出一行,一个整数,表示所有可能的派出划艇的方案数除以 1,000,000,0071,000,000,0071,000,000,007 得到的余数。

输入输出样例

输入样例#1:

2
1 2
2 3
输出样例#1:

7

说明

【样例解释】

在只有一所学校派出划艇的情况下有 444 种方案,两所学校都派出划艇的情况下有 333 种方案,所以答案为 777。

【数据范围】

子任务 111(999 分):1≤N≤5001 \leq N \leq 5001≤N≤500 且对于所有的 1≤i≤N1 \leq i \leq N1≤i≤N,保证 ai=bia_i=b_ia​i​​=b​i​​。

子任务 222(222222 分):1≤N≤5001 \leq N \leq 5001≤N≤500 且 ∑i=1N(bi−ai)≤106\sum_{i=1}^N (b_i-a_i) \leq 10^6∑​i=1​N​​(b​i​​−a​i​​)≤10​6​​。

子任务 333(272727 分):1≤N≤1001 \leq N \leq 1001≤N≤100。

子任务 444(424242 分):1≤N≤5001 \leq N \leq 5001≤N≤500。

http://m.blog.csdn.net/qq_22541499/article/details/51674707这个博客说的很清楚

组合数部分很难理解,建议手推一下

很玄学的是我用数组排序判重离散WA
改成STL set就AC了,回头还要改一下
已改完,为二分错误
以防万一,以后遇到一些奇怪的二分还是用upper_bound
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int Mod=;
typedef long long lol;
lol A[],f[][],len[];
lol a[],b[],ge[],n,cnt;
int main()
{lol i,j,k;
cin>>n;
A[]=;
for (i=;i<=n;i++)
{
A[i]=(Mod-Mod/i)*A[Mod%i]%Mod;
}
for (i=;i<=n;i++)
{
scanf("%lld%lld",&a[i],&b[i]);
ge[i]=a[i];ge[n+i]=b[i]+;
}
sort(ge+,ge+*n+);
for (i=;i<*n;i++)
{
if (ge[i]==ge[i+])
ge[i]=2e9;
}
sort(ge+,ge+*n+);
cnt=*n;
while (ge[cnt]==2e9) cnt--;
for (i=;i<=n;i++)
{
a[i]=upper_bound(ge,ge+cnt+,a[i])-ge;
b[i]=upper_bound(ge,ge+cnt+,b[i])-ge;
//cout<<a[i]<<' '<<b[i]<<endl;
}
for (i=;i<=cnt;i++)
{
f[][i]=;
if (i)
len[i]=ge[i]-ge[i-];
}
for (i=;i<=n;i++)
{
f[i][]=;
for (j=a[i];j<=b[i];j++)
{
f[i][j]=(f[i-][j-]*len[j])%Mod;
lol c=len[j]-,now=;
for (k=i-;k;k--)
{
if (j>=a[k]&&j<=b[k])
{
now++;
c=((c*(len[j]+now-)%Mod)*A[now])%Mod;
if (!c) break;
f[i][j]+=(f[k-][j-]*c)%Mod;
f[i][j]%=Mod;
}
}
}
for (j=;j<=cnt;j++)
{
f[i][j]=(f[i][j]+f[i-][j]+f[i][j-]-f[i-][j-]+Mod)%Mod;
}
}
cout<<(f[n][cnt]-+Mod)%Mod;
}

[APIO2016]划艇的更多相关文章

  1. [洛谷P3643] [APIO2016]划艇

    洛谷题目链接:[APIO2016]划艇 题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 \(N\) 个划艇学校,编号依次为 \(1\) 到 \(N\).每个学校都拥有若干艘 ...

  2. P3643 [APIO2016]划艇

    P3643 [APIO2016]划艇 题意 一个合法序列可表示为一个长度为 \(n\) 的序列,其中第 \(i\) 个数可以为 0 或 \([l_i,r_i]\) 中一个整数,且满足所有不为零的数组成 ...

  3. BZOJ4584 & 洛谷3643 & UOJ204:[APIO2016]划艇——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4584 https://www.luogu.org/problemnew/show/P3643 ht ...

  4. 题解 P3643 [APIO2016]划艇

    题解 一种思路很好想:\(f_{i,j}\) 表示前 \(i\) 所学校中,第 \(i\) 所学校参赛且派出 \(j\) 艘划艇的方案数.(转移就不列了.) 这种方式有一个致命点,就是 \(j\) 的 ...

  5. 洛谷 P3643 - [APIO2016]划艇(dp)

    题面传送门 一道难度中等的 \(dp\)(虽然我没有想出来/kk). 首先一眼 \(dp_{i,j}\) 表示考虑到第 \(i\) 个学校,第 \(i\) 个学校派出了 \(j\) 个划艇的方案数,转 ...

  6. 洛谷P3643 [APIO2016]划艇(组合数学)

    题面 传送门 题解 首先区间个数很少,我们考虑把所有区间离散化(这里要把所有的右端点变为\(B_i+1\)代表的开区间) 设\(f_{i,j}\)表示考虑到第\(i\)个学校且第\(i\)个学校必选, ...

  7. [组合][DP]luogu P3643 [APIO2016]划艇

    题面 https://www.luogu.com.cn/problem/P3643 对于一个序列,第i项可取的值在{0}∪[ai,bi]之间,求使序列非零部分单调递增的方案数 分析 设 $f[i][j ...

  8. Codeforces Educational Round 81 解题报告

    前置扯淡 赛前:这场\(Div2\)呀,那我写\(3\)题就行,\(D\)题尽力就好 赛中:啊啊,\(ABC\)我全过了\(pretest\),我太强了!!这把上蓝稳了 赛后:\(woc\),为啥被\ ...

  9. 5.23考试总结(NOIP模拟2)

    5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...

随机推荐

  1. 2018.3.29 DIV位置调整代码

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  2. python 闭包计算移动均值及nonlocal的使用

    class Averager1(): '''计算移动平均值的类第一种写法''' def __init__(self): self.series = [] def __call__(self,new_v ...

  3. git基本语法

    基本用法(上)               一.实验说明 本节实验为 Git 入门第一个实验,可以帮助大家熟悉如何创建和使用 git 仓库. 二.git的初始化 在使用git进行代码管理之前,我们首先 ...

  4. 09-移动端开发教程-Sass入门

    1. 引言 CSS3之前的CSS都大都是枚举属性样式,而编程语言强大的变量.函数.循环.分支等功能基本都不能在CSS中使用,让CSS的编程黯淡无光,Sass就是一种增强CSS编程的扩展语言(CSS4也 ...

  5. sqlserver学习_01

    sqlserver的学习成长之路,每一个技术的学习过程都是值得让人回味的,现在百度上关于sqlser的资料很多,但是都太杂,希望能为大家分享一点简单易懂的干货,跟大家一起进步学习. 一.建表 1.创建 ...

  6. vue mint-ui 三级地址联动

    我也是第一次写这种地址联动的 刚开始的时候 我还以为直接用select来写 后来公司的ios告知并不是这样的 他说应该时这样的 于是第一想法 赶紧找插件吧 但是找了一会未果  就问了公司大神 他刚开始 ...

  7. C 函数指针与回调函数

    函数指针是指向函数的指针变量. 通常我们说的指针变量是指向一个整型.字符型或数组等变量,而函数指针是指向函数. 函数指针可以像一般函数一样,用于调用函数.传递参数. 函数指针变量的声明: #inclu ...

  8. Autofac 简单示例

    公司不用任何IOC,ORM框架,只好自己没事学学. 可能有些语言描述的不专业 希望能有点用 namespace Autofac { class Program { //声明一个容器 private s ...

  9. Jenkins 安装、配置与项目新建及构建

    1.Jenkins的安装与配置 1.1 java环境配置 Jenkins基于Java, Linux下安装java只要配置java环境变量即可. 首先,解压java到相应目录,我一般习惯把安装的软件放到 ...

  10. 使用 Angular CLI 和 Webpack 分析包尺寸

    使用 Angular CLI 和 Webpack 分析包尺寸 对于 Web app 来说,高性能总是最高优先级,对于 Angular 也不例外.但是随着应用复杂度的不断增长,我们如何才能知道哪些内容打 ...