打造IP代理池,Python爬取Boss直聘,帮你获取全国各类职业薪酬榜
爬虫面临的问题
不再是单纯的数据一把抓
多数的网站还是请求来了,一把将所有数据塞进去返回,但现在更多的网站使用数据的异步加载,爬虫不再像之前那么方便
很多人说js异步加载与数据解析,爬虫可以做到啊,恩是的,无非增加些工作量,那是你没遇到牛逼的前端,多数的解决办法只能靠渲染浏览器抓取,效率低下,接着往下走

千姿百态的登陆验证
从12306的说说下面哪个糖是奶糖,到现在各大网站的滑动拼图、汉子点击解锁,这些操作都是在为了阻止爬虫的自动化运行。
你说可以先登录了复制cookie,但cookie也有失效期吧?
反爬虫机制
何为反爬虫?犀利的解释网上到处搜,简单的逻辑我讲给你听。你几秒钟访问了我的网站一千次,不好意思,我把你的ip禁掉,一段时间你别来了。
很多人又说了,你也太菜了吧,不知道有爬虫ip代理池的开源项目IPProxys吗?那我就呵呵了,几个人真的现在用过免费的ip代理池,你去看看现在的免费代理池,有几个是可用的!
再说了,你通过IPProxys代理池,获取到可用的代理访问人家网站,人家网站不会用同样的办法查到可用的代理先一步封掉吗?然后你只能花钱去买付费的代理
数据源头封锁
平时大家看的什么爬爬豆瓣电影网站啊,收集下某宝评论啊….这些都是公开数据。但现在更多的数据逐步走向闭源化。数据的价值越来越大,没有数据获取的源头,爬虫面临什么问题?
上面说了一堆的爬虫这不好那不好,结果我今天发的文章确是爬虫的,自己打自己的脸? 其实我只是想说说网站数据展示与分析的技巧…恰巧Boss直聘就做的很不错。怎么不错?一点点分析…
数据共享
先来看一张图
我选择黑龙江省的大兴安岭,去看看那里有招聘python的没,多数系统查询不到数据就会给你提示未获取到相关数据,但Boss直聘会悄悄地吧黑龙江省的python招聘信息给你显示处理,够鸡~贼。
数据限制
大兴安岭没有搞python的,那我们去全国看看吧:
这里差一点就把我坑了,我开始天真的以为,全国只有300条(一页30条,共10也)python招聘信息。 然后我回过头去看西安的,也只有10页,然后想着修改下他的get请求parameters,没卵用。
这有啥用?仔细想…一方面可以做到放置咱们爬虫一下获取所有的数据,但这只是你自作多情,这东西是商机!
每天那么多的商家发布招聘信息,进入不了top100,别人想看都看不到你的消息,除非搜索名字。那么如何排名靠前?答案就是最后俩字,靠钱。你是Boss直聘的会员,你发布的就会靠前….
偷换概念
依旧先看图:
我搜索的是ruby,你资料不够,其他来凑….
ip解析
老套路,再来看一张图:
Boss直聘的服务器里,留着我的痕迹,多么骄傲的事情啊。你们想不想和我一样?只需要3秒钟…. 三秒钟内你的访问量能超过1000,妥妥被封!
那么我们该怎么办
设置不同的User-Agent
使用pip install fake-useragent安装后获取多种User-Agent,但其实本地保存上几十个,完全够了….
不要太夯(大力)
适当的减慢你的速度,别人不会觉得是你菜….别觉得一秒爬几千比一秒爬几百的人牛逼(快枪手子弹打完的早….不算开车吧?)。
购买付费的代理
为什么我跳过了说免费的代理?因为现在搞爬虫的人太多了,免费的基本早就列入各大网站的黑名单了。
所以解析到的原始数据如下:
先来看看python的薪酬榜:
看一下西安的排位,薪资平均真的好低…..
代码
1 import requests
2 from bs4 import BeautifulSoup
3 import csv
4 import random
5 import time
6 import argparse
7 from pyecharts.charts import Line
8 import pandas as pd
9
10
11 class BossCrawler:
12 def __init__(self, query):
13
14 self.query = query
15 self.filename = 'boss_info_%s.csv' % self.query
16 self.city_code_list = self.get_city()
17 self.boss_info_list = []
18 self.csv_header = ["city", "profession", "salary", "company"]
19
20 @staticmethod
21 def getheaders():
22 user_list = [
23 "Opera/9.80 (X11; Linux i686; Ubuntu/14.10) Presto/2.12.388 Version/12.16",
24 "Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.14",
25 "Mozilla/5.0 (Windows NT 6.0; rv:2.0) Gecko/20100101 Firefox/4.0 Opera 12.14",
26 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0) Opera 12.14",
27 "Opera/12.80 (Windows NT 5.1; U; en) Presto/2.10.289 Version/12.02",
28 "Opera/9.80 (Windows NT 6.1; U; es-ES) Presto/2.9.181 Version/12.00",
29 "Opera/9.80 (Windows NT 5.1; U; zh-sg) Presto/2.9.181 Version/12.00",
30 "Opera/12.0(Windows NT 5.2;U;en)Presto/22.9.168 Version/12.00",
31 "Opera/12.0(Windows NT 5.1;U;en)Presto/22.9.168 Version/12.00",
32 "Mozilla/5.0 (Windows NT 5.1) Gecko/20100101 Firefox/14.0 Opera/12.0",
33 "Opera/9.80 (Windows NT 6.1; WOW64; U; pt) Presto/2.10.229 Version/11.62",
34 "Opera/9.80 (Windows NT 6.0; U; pl) Presto/2.10.229 Version/11.62",
35 "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
36 "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; de) Presto/2.9.168 Version/11.52",
37 "Opera/9.80 (Windows NT 5.1; U; en) Presto/2.9.168 Version/11.51",
38 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; de) Opera 11.51",
39 "Opera/9.80 (X11; Linux x86_64; U; fr) Presto/2.9.168 Version/11.50",
40 "Opera/9.80 (X11; Linux i686; U; hu) Presto/2.9.168 Version/11.50",
41 "Opera/9.80 (X11; Linux i686; U; ru) Presto/2.8.131 Version/11.11",
42 "Opera/9.80 (X11; Linux i686; U; es-ES) Presto/2.8.131 Version/11.11",
43 "Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/5.0 Opera 11.11",
44 "Opera/9.80 (X11; Linux x86_64; U; bg) Presto/2.8.131 Version/11.10",
45 "Opera/9.80 (Windows NT 6.0; U; en) Presto/2.8.99 Version/11.10",
46 "Opera/9.80 (Windows NT 5.1; U; zh-tw) Presto/2.8.131 Version/11.10",
47 "Opera/9.80 (Windows NT 6.1; Opera Tablet/15165; U; en) Presto/2.8.149 Version/11.1",
48 "Opera/9.80 (X11; Linux x86_64; U; Ubuntu/10.10 (maverick); pl) Presto/2.7.62 Version/11.01",
49 "Opera/9.80 (X11; Linux i686; U; ja) Presto/2.7.62 Version/11.01",
50 "Opera/9.80 (X11; Linux i686; U; fr) Presto/2.7.62 Version/11.01",
51 "Opera/9.80 (Windows NT 6.1; U; zh-tw) Presto/2.7.62 Version/11.01",
52 "Opera/9.80 (Windows NT 6.1; U; zh-cn) Presto/2.7.62 Version/11.01",
53 "Opera/9.80 (Windows NT 6.1; U; sv) Presto/2.7.62 Version/11.01",
54 "Opera/9.80 (Windows NT 6.1; U; en-US) Presto/2.7.62 Version/11.01",
55 "Opera/9.80 (Windows NT 6.1; U; cs) Presto/2.7.62 Version/11.01",
56 "Opera/9.80 (Windows NT 6.0; U; pl) Presto/2.7.62 Version/11.01",
57 "Opera/9.80 (Windows NT 5.2; U; ru) Presto/2.7.62 Version/11.01",
58 "Opera/9.80 (Windows NT 5.1; U;) Presto/2.7.62 Version/11.01",
59 "Opera/9.80 (Windows NT 5.1; U; cs) Presto/2.7.62 Version/11.01",
60 "Mozilla/5.0 (Windows NT 6.1; U; nl; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6 Opera 11.01",
61 "Mozilla/5.0 (Windows NT 6.1; U; de; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6 Opera 11.01",
62 "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; de) Opera 11.01",
63 "Opera/9.80 (X11; Linux x86_64; U; pl) Presto/2.7.62 Version/11.00",
64 "Opera/9.80 (X11; Linux i686; U; it) Presto/2.7.62 Version/11.00",
65 "Opera/9.80 (Windows NT 6.1; U; zh-cn) Presto/2.6.37 Version/11.00",
66 "Opera/9.80 (Windows NT 6.1; U; pl) Presto/2.7.62 Version/11.00",
67 "Opera/9.80 (Windows NT 6.1; U; ko) Presto/2.7.62 Version/11.00",
68 "Opera/9.80 (Windows NT 6.1; U; fi) Presto/2.7.62 Version/11.00",
69 "Opera/9.80 (Windows NT 6.1; U; en-GB) Presto/2.7.62 Version/11.00",
70 "Opera/9.80 (Windows NT 6.1 x64; U; en) Presto/2.7.62 Version/11.00",
71 "Opera/9.80 (Windows NT 6.0; U; en) Presto/2.7.39 Version/11.00"
72 ]
73 user_agent = random.choice(user_list)
74 headers = {'User-Agent': user_agent}
75 return headers
76
77 def get_city(self):
78 headers = self.getheaders()
79 r = requests.get("http://www.zhipin.com/wapi/zpCommon/data/city.json", headers=headers)
80 data = r.json()
81 return [city['code'] for city in data['zpData']['hotCityList'][1:]]
82
83 def get_response(self, url, params=None):
84 headers = self.getheaders()
85 r = requests.get(url, headers=headers, params=params)
86 r.encoding = 'utf-8'
87 soup = BeautifulSoup(r.text, "lxml")
88 return soup
89
90 def get_url(self):
91 for city_code in self.city_code_list:
92 url = "https://www.zhipin.com/c%s/" % city_code
93 self.per_page_info(url)
94 time.sleep(10)
95
96 def per_page_info(self, url):
97 for page_num in range(1, 11):
98 params = {"query": self.query, "page": page_num}
99 soup = self.get_response(url, params)
100 lines = soup.find('div', class_='job-list').select('ul > li')
101 if not lines:
102 # 代表没有数据了,换下一个城市
103 return
104 for line in lines:
105 info_primary = line.find('div', class_="info-primary")
106 city = info_primary.find('p').text.split(' ')[0]
107 job = info_primary.find('div', class_="job-title").text
108 # 过滤答非所谓的招聘信息
109 if self.query.lower() not in job.lower():
110 continue
111 salary = info_primary.find('span', class_="red").text.split('-')[0].replace('K', '')
112 company = line.find('div', class_="info-company").find('a').text.lower()
113 result = dict(zip(self.csv_header, [city, job, salary, company]))
114 print(result)
115 self.boss_info_list.append(result)
116
117 def write_result(self):
118 with open(self.filename, "w+", encoding='utf-8', newline='') as f:
119 f_csv = csv.DictWriter(f, self.csv_header)
120 f_csv.writeheader()
121 f_csv.writerows(self.boss_info_list)
122
123 def read_csv(self):
124 data = pd.read_csv(self.filename, sep=",", header=0)
125 data.groupby('city').mean()['salary'].to_frame('salary').reset_index().sort_values('salary', ascending=False)
126 result = data.groupby('city').apply(lambda x: x.mean()).round(1)['salary'].to_frame(
127 'salary').reset_index().sort_values('salary', ascending=False)
128 print(result)
129 charts_bar = (
130 Line()
131 .set_global_opts(
132 title_opts={"text": "全国%s薪酬榜" % self.query})
133 .add_xaxis(result.city.values.tolist())
134 .add_yaxis("salary", result.salary.values.tolist())
135 )
136 charts_bar.render('%s.html' % self.query)
137
138
139 if __name__ == '__main__':
140 parser = argparse.ArgumentParser()
141 parser.add_argument("-k", "--keyword", help="请填写所需查询的关键字")
142 args = parser.parse_args()
143 if not args.keyword:
144 print(parser.print_help())
145 else:
146 main = BossCrawler(args.keyword)
147 main.get_url()
148 main.write_result()
149 main.read_csv()
打造IP代理池,Python爬取Boss直聘,帮你获取全国各类职业薪酬榜的更多相关文章
- Python爬取Boss直聘,帮你获取全国各类职业薪酬榜
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 王翔 清风Python PS:如有需要Python学习资料的小伙伴 ...
- Scrapy 爬取BOSS直聘关于Python招聘岗位
年前的时候想看下招聘Python的岗位有多少,当时考虑目前比较流行的招聘网站就属于boss直聘,所以使用Scrapy来爬取下boss直聘的Python岗位. 1.首先我们创建一个Scrapy 工程 s ...
- Python的scrapy之爬取boss直聘网站
在我们的项目中,单单分析一个51job网站的工作职位可能爬取结果不太理想,所以我又爬取了boss直聘网的工作,不过boss直聘的网站一次只能展示300个职位,所以我们一次也只能爬取300个职位. jo ...
- 用BeautifulSoup简单爬取BOSS直聘网岗位
用BeautifulSoup简单爬取BOSS直聘网岗位 爬取python招聘 import requests from bs4 import BeautifulSoup def fun(path): ...
- python3 爬取boss直聘职业分类数据(未完成)
import reimport urllib.request # 爬取boss直聘职业分类数据def subRule(fileName): result = re.findall(r'<p cl ...
- scrapy爬取boss直聘实习生数据
这个..是我最近想找实习单位..结果发现boss上很多实习单位名字就叫‘实习生’.......太不讲究了 == 难怪一直搜不到..咳,其实是我自己水平有限,有些简历根本就投不出去 == 所以就想爬下b ...
- Pyhton爬虫实战 - 抓取BOSS直聘职位描述 和 数据清洗
Pyhton爬虫实战 - 抓取BOSS直聘职位描述 和 数据清洗 零.致谢 感谢BOSS直聘相对权威的招聘信息,使本人有了这次比较有意思的研究之旅. 由于爬虫持续爬取 www.zhipin.com 网 ...
- scrapy——7 scrapy-redis分布式爬虫,用药助手实战,Boss直聘实战,阿布云代理设置
scrapy——7 什么是scrapy-redis 怎么安装scrapy-redis scrapy-redis常用配置文件 scrapy-redis键名介绍 实战-利用scrapy-redis分布式爬 ...
- python分析BOSS直聘的某个招聘岗位数据
前言 毕业找工作,在职人员换工作,离职人员找工作……不管什么人群,应聘求职,都需要先分析对应的招聘岗位,岗位需求是否和自己匹配,常见的招聘平台有:BOSS直聘.拉钩招聘.智联招聘等,我们通常的方法都是 ...
随机推荐
- 2、netty第一个例子,简单的http服务器
用netty来启动一个简单的可处理http请求的服务器. 依照前面写的使用netty的过程.贴上代码 server import io.netty.bootstrap.ServerBootstrap; ...
- Mybatis XML映射文件
mybatis为聚焦于SQL而构建,SQL映射文件常用的顶级元素如 resultMap,是最复杂也是最强大的元素,用来描述如何从数据库结果集中来加载对象. insert,映射插入语句 update, ...
- 学习之Redis(二)
Redis的对象和数据结构 一.字符串对象(请参考学习之Redis(一):https://www.cnblogs.com/wbq1994/p/12029516.html) 二.列表对象 列表对象的编码 ...
- R-6 线性回归模型流程
本节内容: 0:小知识 1:新数据要如何进行分析 2:第二步骤:理解数据 3:第三步骤:相关分析 4:特殊点 0:小知识 0.1:我们说对分析一个数据一般是分步骤的:那么我们可以对其中的步骤进行打标签 ...
- IO 多路复用详解
转自:https://blog.csdn.net/sehanlingfeng/article/details/78920423
- 设计模式-工厂模式(Factory)(创建型模式)
以下代码来源: 设计模式精解-GoF 23种设计模式解析附C++实现源码 //Product.h #pragma once class Product { public: ; protected: P ...
- IT兄弟连 HTML5教程 HTML5表单 多样的输入类型2
4 range range类型用于包含一定范围内数字值的输入域,跟number一样,我们还可以对数值设置限定,range类型显示为滑动条用法如下: 上述代码使用了range类型输入框,为该类型设置了 ...
- 为什么 Go 标准库中有些函数只有签名,没有函数体?
如果你看过 Go 语言标准库,应该有见到过,有一些函数只有签名,没有函数体.你有没有感觉到很奇怪?这到底是怎么回事?我们自己可以这么做吗?本文就来解密它. 首先,函数肯定得有实现,没有函数体,一定是在 ...
- Linux系统:centos7下搭建Rocketmq4.3中间件,配置监控台
本文源码:GitHub·点这里 || GitEE·点这里 一.环境搭建 环境版本 centos7 jdk1.8 已搭建好 rocketmq4.3 1.下载安装包 网址 https://www.apac ...
- JavaWeb入门——背景知识
JavaWeb入门——背景知识 摘要:本文主要介绍了Web服务器的相关知识. 概念 什么是JavaWeb JavaWeb,是用Java技术来解决相关Web互联网领域的技术的总称.Web包括:Web服务 ...