题目

思路

倒序 \(DP\)

设 \(f_{i,j}\) 表示 \(A\) 先手,当前 \(A\) 报出的值为 \(i\),\(B\) 报出的值为 \(j\),\(A\) 取诱惑值大于等于 \(i\) 的, \(A\) 能拿到的最大收益

\(g_{i,j}\) 表示 \(B\) 先手,当前 \(B\) 报出的值为 \(j\),\(A\) 报出的值为 \(i\),\(B\) 取诱惑值大于等于 \(j\) 的,\(B\) 能拿到的最大收益(和 \(f\) 同理)

那么我们考虑转移 \(f_{i,j}=\max(sum_{i,j} - g_{k,j}) i + 1 \leq k \leq n\)

\(sum_{i,j}\) 和 \(f,g\) 的意思差不多,就是改成全取的总收益

\(g\) 转移同理

但其中有个很重要的细节:每次转移必须选数

所以我们要记录 \(cnt_{i,j}\) 表示和 \(sum\) 差不多,但它存的是诱惑值范围内数的个数

当本次转移的 \(cnt_{i,j}\) 等于上次转移用的 \(cnt\) 时,直接继承

一看,what out?! \(O(n^3)\) 的!!

不可接受

但我们发现转移时总有一维是固定

我们可以开个数组算完 \(f\) 后更新最优值

这样就可以做到 \(O(1)\) 转移

注意先离散化,求 \(sum,cnt\) 时用二维前缀和

\(Code\)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL; const int N = 1005;
int n;
LL f[N][N] , g[N][N] , a[N] , b[N] , c[N] , val[N] , sum[N][N] , cnt[N][N]; int main()
{
freopen("poker.in" , "r" , stdin);
freopen("poker.out" , "w" , stdout); scanf("%d" , &n);
for(register int i = 1; i <= n; i++) scanf("%lld" , &val[i]);
for(register int i = 1; i <= n; i++) scanf("%lld%lld" , &a[i] , &b[i]); for(register int i = 1; i <= n; i++) c[i] = a[i];
sort(c + 1 , c + n + 1);
int m = unique(c + 1 , c + n + 1) - c - 1;
for(register int i = 1; i <= n; i++) a[i] = lower_bound(c + 1 , c + m + 1 , a[i]) - c; for(register int i = 1; i <= n; i++) c[i] = b[i];
sort(c + 1 , c + n + 1);
m = unique(c + 1 , c + n + 1) - c - 1;
for(register int i = 1; i <= n; i++) b[i] = lower_bound(c + 1 , c + m + 1 , b[i]) - c; for(register int i = 1; i <= n; i++)
++cnt[a[i]][b[i]] , sum[a[i]][b[i]] += val[i];
for(register int i = n; i; i--)
for(register int j = n; j; j--)
{
sum[i][j] += sum[i + 1][j] + sum[i][j + 1] - sum[i + 1][j + 1];
cnt[i][j] += cnt[i + 1][j] + cnt[i][j + 1] - cnt[i + 1][j + 1];
}
for(register int i = n; i; i--)
for(register int j = n; j; j--)
{
f[i][j] = (cnt[i][j] == cnt[i + 1][j] ? f[i + 1][j] : sum[i][j] - a[j]);
g[i][j] = (cnt[i][j] == cnt[i][j + 1] ? g[i][j + 1] : sum[i][j] - b[i]);
a[j] = min(a[j] , g[i][j]) , b[i] = min(b[i] , f[i][j]);
}
printf("%lld" , f[1][1]);
}

JZOJ 4299. 【NOIP2015模拟11.2晚】舳舻牌的更多相关文章

  1. [JZOJ 4307] [NOIP2015模拟11.3晚] 喝喝喝 解题报告

    题目链接: http://172.16.0.132/senior/#main/show/4307 题目: 解题报告: 题目询问我们没出现坏对的连续区间个数 我们考虑从左到有枚举右端点$r$,判断$a[ ...

  2. JZOJ 4298. 【NOIP2015模拟11.2晚】我的天

    4298. [NOIP2015模拟11.2晚]我的天 (File IO): input:ohmygod.in output:ohmygod.out Time Limits: 1000 ms Memor ...

  3. 【NOIP2015模拟11.2晚】JZOJ8月4日提高组T2 我的天

    [NOIP2015模拟11.2晚]JZOJ8月4日提高组T2 我的天 题目 很久很以前,有一个古老的村庄--xiba村,村子里生活着n+1个村民,但由于历届村长恐怖而且黑暗的魔法统治下,村民们各自过着 ...

  4. JZOJ4307. 【NOIP2015模拟11.3晚】喝喝喝

    Description

  5. 【NOIP2015模拟11.2晚】我的天

    题目 很久很以前,有一个古老的村庄--xiba村,村子里生活着n+1个村民,但由于历届村长恐怖而且黑暗的魔法统治下,村民们各自过着独立的生活,完全没有意识到其他n个人的存在. 但有一天,村民xiba臻 ...

  6. 【NOIP2015模拟11.4】JZOJ8月6日提高组T1 刷题计划

    [NOIP2015模拟11.4]JZOJ8月6日提高组T1 刷题计划 题目 题解 题意 有\(n\)道题,编号为1~\(n\) 给出\(m\)次操作 每次操作有3种类型 1 \(x\) 表示交了\(A ...

  7. 【NOIP2015模拟11.5】JZOJ8月5日提高组T2 Lucas的数列

    [NOIP2015模拟11.5]JZOJ8月5日提高组T2 Lucas的数列 题目 PS:\(n*n*T*T<=10^{18}\)而不是\(10^1*8\) 题解 题意: 给出\(n\)个元素的 ...

  8. 【NOIP2015模拟11.5】JZOJ8月5日提高组T1 俄罗斯套娃

    [NOIP2015模拟11.5]JZOJ8月5日提高组T1 俄罗斯套娃 题目 题解 题意就是说 将1~\(n\)排列,问有多少种方案使得序列的逆序对个数小于\(k\) 很容易想到DP 设\(f[i][ ...

  9. 【NOIP2015模拟11.4】JZOJ2020年8月6日提高组T2 最优交换

    [NOIP2015模拟11.4]JZOJ2020年8月6日提高组T2 最优交换 题目 题解 题意 有一个长度为\(n\)的正整数 最多可以进行\(k\)次操作 每次操作交换相邻两个位置上的数 问可以得 ...

  10. 【NOIP2015模拟11.5】JZOJ8月5日提高组T3 旅行

    [NOIP2015模拟11.5]JZOJ8月5日提高组T3 旅行 题目 若不存在第\(k\)短路径时,输出"Stupid Mike" 题解 题意 给出一个有\(n\)个点的树 问这 ...

随机推荐

  1. PP视频(PPTV聚力)web接口分析

    前言 前几天我想看一个番剧, 正好搜索到了 PP视频,我才知道PP视频就是PPTV聚力,我想把番剧下载下来,结果发现视频竟然不是m3u8格式,而是多段mp4,所以简单的写了个脚本,可以在不登录的情况下 ...

  2. 关于 python 的内存机制

    先看一段代码 L = [1,2,3] dic_ = {} L2 = [] for i in L: dic_['sn'] = i L2.append(dic_) print(L2) 输出 [{'sn': ...

  3. Java开发学习(四十四)----MyBatisPlus查询语句之查询条件

    1.查询条件 前面我们只使用了lt()和gt(),除了这两个方法外,MybatisPlus还封装了很多条件对应的方法. MybatisPlus的查询条件有很多: 范围匹配(> . = .betw ...

  4. VulnHub靶场渗透实战8-DarkHole: 2

    靶场地址:DarkHole: 2 ~ VulnHub DescriptionBack to the Top Difficulty:Hard This works better with VMware ...

  5. 根据经纬度算UTM带号

    1.  UTM (Universal Transverse Mercator)坐标系是由美国军方在1947提出的.虽然我们仍然将其看作与"高斯-克吕格"相似的坐标系统,但实际上UT ...

  6. 数电第8周周结_by_yc

    基本知识: 1.有限状态机的分类: Moore型:输出仅与电路的状态有关: Mealy型:输出与当前电路状态和当前电路输入有关. 2.有限状态机的描述方法: 状态转换图:节点:状态(Moore输出): ...

  7. 把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10

    就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑.这是一款无与伦比.超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的 ...

  8. 安装aio-pika报错

    报错内容: WARNING: You are using pip version 21.1.2; however, version 21.3.1 is available. You should co ...

  9. 静态文件配置,django连接MySQL,ORM基本操作

    静态文件 什么是静态文件 静态文件是不怎么经常变化的文件,主要针对html文件所使用的到的各种资源. css文件.js文件.img文件.第三方框架文件 django针对静态文件资源需要单独开始一个目录 ...

  10. Spring之后置处理器

      Spring的后置处理器是Spring对外开发的重要扩展点,允许我们接入Bean的实例化流程中,以达到动态注册BeanDefinition.动态修改BeanDefinition.动态修改Bean的 ...