Spark中的Wordcount
通过scala语言基于local编写spark的Wordcount
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount {
def main(args: Array[String]): Unit = {
// Spark配置文件对象
val conf: SparkConf = new SparkConf()
// 设置Spark程序的名字
conf.setAppName("WordCount")
// 设置运行模式为local模式 即在idea本地运行
// local : 一个并行度
// local[2] : 两个并行度
// local[*] : 有多少用多少
conf.setMaster("local")
// Spark的上下文环境,相当于Spark的入口
val sc: SparkContext = new SparkContext(conf)
// 词频统计
// 1、读取文件
/**
* RDD : 弹性分布式数据集(可以先当成scala中的集合去使用)
*/
val linesRDD: RDD[String] = sc.textFile("scala/data/words.txt")
// 2、将每一行的单词切分出来
// flatMap: 在Spark中称为 算子
// 算子一般情况下都会返回另外一个新的RDD
val wordsRDD: RDD[String] = linesRDD.flatMap(kv=>kv.split(","))
// 3、按照单词分组
val groupRDD: RDD[(String, Iterable[String])] = wordsRDD.groupBy(kv=>kv)
// 4、统计每个单词的数量
val countRDD: RDD[String] = groupRDD.map(kv => {
val key: String = kv._1
val values: Iterable[String] = kv._2
// words.size直接获取迭代器的大小
// 因为相同分组的所有的单词都会到迭代器中
// 所以迭代器的大小就是单词的数量
val size: Int = values.size
key + "," + size
})
countRDD.saveAsTextFile("spark/data/wordcount.txt")
}
}

会报这个错
解决方案:
新建一个文件夹,放入这个文件

配置环境变量

需要导入的依赖
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.5</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.12</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-compiler</artifactId>
<version>2.11.12</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>2.11.12</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.49</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- Java Compiler -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<!-- Scala Compiler -->
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
基于yarn去调度WordCount
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* 1、去除setMaster("local")
* 2、修改文件的输入输出路径(因为提交到集群默认是从HDFS获取数据,需要改成HDFS中的路径)
* 3、在HDFS中创建目录
* hdfs dfs -mkdir -p /spark/data/words/
* 4、将数据上传至HDFS
* hdfs dfs -put words.txt /spark/data/words/
* 5、将程序打成jar包
* 6、将jar包上传至虚拟机,然后通过spark-submit提交任务
* spark-submit --class WordCount2 --master yarn-client spark-1.0.jar
* spark-submit --class WordCount2 --master yarn-cluster spark-1.0.jar
*/
object WordCount2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("WordCount2")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("/spark/data/words")
val wordsRDD: RDD[String] = linesRDD.flatMap(s=>s.split(","))
val groupRDD: RDD[(String, Iterable[String])] = wordsRDD.groupBy(s=>s)
val resRDD: RDD[String] = groupRDD.map(kv => {
kv._1 + "," + kv._2.size
})
// 使用HDFS的JAVA API判断输出路径是否已经存在,存在即删除
val conff: Configuration = new Configuration()
// core-site.xml
conff.set("fs.defaultFS", "hdfs://master:9000")
val sys = FileSystem.get(conff)
if (sys.exists(new Path("/spark/data/wordcount"))){
sys.delete(new Path("/spark/data/wordcount"),true)
}
resRDD.saveAsTextFile("/spark/data/wordcount")
}
}
打成jar包去运行
默认会有两个分区Task

可以通过sc.textFile(Path,分区个数)
on yarn的两种模式
yarn client模式:driverzai当前提交任务的节点上,可以打印任务运行的日志信息,而
yarn cluster模式:driver在AppMaster所有节点上,分布式分配,不能再提交任务的本机打印日志信息
Spark中的Wordcount的更多相关文章
- 006 Spark中的wordcount以及TopK的程序编写
1.启动 启动HDFS 启动spark的local模式./spark-shell 2.知识点 textFile: def textFile( path: String, minPartitions: ...
- Spark中的wordCount程序实现
import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.s ...
- spark 中的RDD编程 -以下基于Java api
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...
- 大话Spark(3)-一图深入理解WordCount程序在Spark中的执行过程
本文以WordCount为例, 画图说明spark程序的执行过程 WordCount就是统计一段数据中每个单词出现的次数, 例如hello spark hello you 这段文本中hello出现2次 ...
- Spark初步 从wordcount开始
Spark初步-从wordcount开始 spark中自带的example,有一个wordcount例子,我们逐步分析wordcount代码,开始我们的spark之旅. 准备工作 把README.md ...
- 【Spark篇】---Spark中Shuffle机制,SparkShuffle和SortShuffle
一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有val ...
- intellij-idea打包Scala代码在spark中运行
.创建好Maven项目之后(记得添加Scala框架到该项目),修改pom.xml文件,添加如下内容: <properties> <spark.version></spar ...
- spark中的RDD以及DAG
今天,我们就先聊一下spark中的DAG以及RDD的相关的内容 1.DAG:有向无环图:有方向,无闭环,代表着数据的流向,这个DAG的边界则是Action方法的执行 2.如何将DAG切分stage,s ...
- Tachyon在Spark中的作用(Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks 论文阅读翻译)
摘要: Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者 ...
随机推荐
- Vue 面试题
1.Vue父组件向子组件传递数据? 答:props传参 父组件 <child :list="list"></child> //在这里绑定list对象 子组件 ...
- 对axios的理解
axios是基于promise的,可以使用promise api axios的请求方式 axios(config) axios.request(config) axios.get(url [,conf ...
- Net6 DI源码分析Part1 ServiceCollection、ServiceDescriptor、ServiceLifetime、IServiceProvider
ServiceCollection.ServiceDescriptor.ServiceLifetime.IServiceProvider Microsoft.Extensions.Dependency ...
- 新手应该如何学习 PHP 语言?
其实php开发,不只是一个简单的php开发,而是整个一个行业,一般叫web开发,或者php后端开发,所以从html,css,js,jq,php,sql基本这些都要有了解.当然你有html,css基础, ...
- Java中Type接口及其子类
简介 Type是Java 编程语言中所有类型的公共高级接口,和Object不同,Object是所有类的父类,即Object是Type的父类. 分类 原始类型(Class):不仅仅包含我们平常所指的类, ...
- Android文件的权限概念
//通过context对象获取一个私有目录的文件读取流 /data/data/packagename/files/userinfoi.txt FileInputStream fileInputS ...
- svn 用户名,密码 查看/删除
1.查看svn 的用户名,密码: 找到用户名,密码文件,都是明文的,你可以看到 例:linux ls ~/.subversion/auth/svn.simple 2ab598e9cb6d6d38761 ...
- 【转】Python 并行分布式框架 Celery
原文链接:https://blog.csdn.net/freeking101/article/details/74707619 Celery 官网:http://www.celeryproject.o ...
- MySQL 数据库SQL语句——高阶版本2
MySQL 数据库SQL语句--高阶版本2 实验准备 数据库表配置: mysql -uroot -p show databases; create database train_ticket; use ...
- Vue 子组件更新父组件的值
今天在使用Vue中遇到了一个新的需求:子组件需要修改由父组件传递过来的值,由于子组件的值是由父组件传递过来的,不能直接修改属性的值, 我们想改变传递过来的值只能通过自定义事件的形式修改父组件的值达到修 ...