Choosing number


Time Limit: 2 Seconds      Memory Limit: 65536 KB


There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose
the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

And you need to calculate how many ways they can choose the numbers obeying the rule.

Input

There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

Output

One line for each case. The number of ways module 1000000007.

Sample Input

4 4 1

Sample Output

216

题意:有n个人,1到m个数。这n个人。每人选一个数字,要求相邻的两个人选择的数要么不相等,要么相等时大于k

题解:dp[i][0]:第i个人选大于k的数的最优解,dp[i][1]:第i个人选小于等于k的数的最优解。

则  dp[i][0]=(m-k)*dp[i-1][0]+(m-k)*dp[i-1][1]

dp[i][1]=k*dp[i-1][0]+(k-1)*dp[i-1][1].

构造矩阵:  |  dp[i][0]     |           |  m-k ,m-k |         |  dp[i-1][0]  |

=                           *

|  dp[i][1]     |          |   k     ,k-1  |          |   dp[i-1][1]  |

#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<vector>
#define ll long long
#define mod 1000000007
using namespace std; typedef vector<ll>vec;
typedef vector<vec>mat; ll n,m,k; mat mul(mat &A,mat &B) {
mat C(A.size(),vec(B[0].size()));
for(int i=0; i<A.size(); i++) {
for(int k=0; k<B.size(); k++) {
for(int j=0; j<B[0].size(); j++) {
C[i][j]=(C[i][j]+A[i][k]*B[k][j])%mod;
}
}
}
return C;
} mat pow_mod(mat A,ll x) {
mat B(A.size(),vec(A.size()));
for(int i=0; i<A.size(); i++) {
B[i][i]=1;
}
while(x>0) {
if(x&1)B=mul(B,A);
A=mul(A,A);
x>>=1;
}
return B;
} int main() {
//freopen("test.in","r",stdin);
while(~scanf("%lld%lld%lld",&n,&m,&k)) {
mat A(2,vec(2));
A[0][0]=m-k,A[0][1]=m-k;
A[1][0]=k,A[1][1]=k-1;
A=pow_mod(A,n-1);
ll ans=(A[0][0]+A[1][0])*(m-k)%mod+(A[0][1]+A[1][1])*k%mod;
printf("%lld\n",ans%mod);
}
return 0;
}

ZOJ 3690 Choosing number(dp矩阵优化)的更多相关文章

  1. ZOJ 3690 Choosing number(矩阵)

    Choosing number [题目链接]Choosing number [题目类型]矩阵 &题解: 这题就和已经dp极像了,所以找方程就很困难了.可以这样找: 设f(n)是前n-1个人已经 ...

  2. zoj 3690 Choosing number

    题意    就是说给你 N 个人站成一排,现在每个人都可以选择 1-M 中间的任意一个数字,相邻的两个人数字相同,则他必须是是 >  K 的  问方案总数: 方法    先求出递推式,然后用矩阵 ...

  3. hdu 4576(简单概率dp | 矩阵优化)

    艰难的一道题,体现出菜菜的我... 首先,先吐槽下. 这题到底出题人是怎么想的,用普通概率dp水过??? 那为什么我概率dp写的稍微烂点就一直tle?  感觉很不公平.大家算法都一致,因为我程序没有那 ...

  4. CF1151F Sonya and Informatics (计数dp+矩阵优化)

    题目地址 Solution (duyi是我们的红太阳) (这里说一句:这题看上去是一个概率dp,鉴于这题的概率dp写法看上去不好写,我们其实可以写一个计数dp) 首先拿到这个题目我们要能设出一个普通d ...

  5. Codeforces 917C - Pollywog(状压 dp+矩阵优化)

    UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...

  6. New Year and Old Subsequence CodeForces - 750E (dp矩阵优化)

    大意: 给定字符串, 每次询问区间[l,r]有子序列2017, 无子序列2016所需要删除的最小字符数 转移用矩阵优化一下, 要注意$(\mathbb{Z},min,+)$的幺元主对角线全0, 其余全 ...

  7. BZOJ4000 [TJOI2015]棋盘 【状压dp + 矩阵优化】

    题目链接 BZOJ4000 题解 注意题目中的编号均从\(0\)开始= = \(m\)特别小,考虑状压 设\(f[i][s]\)为第\(i\)行为\(s\)的方案数 每个棋子能攻击的只有本行,上一行, ...

  8. [Vijos1067]Warcraft III 守望者的烦恼(DP + 矩阵优化)

    传送门 可知 f[i] = f[i - 1] + f[i - 2] + ... + f[i - k] 直接矩阵优化就好了 #include <cstdio> #include <cs ...

  9. BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...

随机推荐

  1. OC第三天(内存管理)

    内存管理: 1.作用范围: 不论什么继承了NSObject的对象,堆基本数据类型无效如:int a ,float price;;等 2.原理: 每一个对象内部都保存了一个与之相关的整数,称为引用计数器 ...

  2. 婚礼上的谎言(C++实现)

    #include<iostream> using namespace std; void main(void) { int a,b,c; char DD,EE,FF; for (a=1;a ...

  3. Object::connect: Cannot queue arguments of type 'QMap<QString,QString>'(要使用qRegisterMetaType<StringMap>进行注册)

    QObject::connect: Cannot queue arguments of type 'QMap<QString,QString>',(Make sure 'QMap<Q ...

  4. 蓝桥杯--算法提高 排列数 (简单dfs)

    算法提高 排列数   时间限制:1.0s   内存限制:256.0MB      问题描述 0.1.2三个数字的全排列有六种,按照字母序排列如下: 012.021.102.120.201.210 输入 ...

  5. kubernetes系列:(二)、kubernetes部署mysql(单节点)

    使用kubeadm搭建好kubernetes集群后就可以动手部署自己的应用了. 本文用例来自官网,如有需要请参看 kubernetes官网 一.环境说明 kubernetes 1.13.1 docke ...

  6. 抓取git的log文件批处理命令示例

    @echoset sincedate="2016-04-28 00:00:01"          ::变量set beforedate="2016-04-29 00:0 ...

  7. SQL Server 内存使用情况

    • 查看设置的最大与最小内存: exec sp_configure 'max server memory (MB)' exec sp_configure 'min server memory (MB) ...

  8. C#、SQL中的事务

    c#方法一: TransactionOptions transactionOption = new TransactionOptions(); //设置事务隔离级别 transactionOption ...

  9. SQL CASE WHEN语句性能优化

    背景:性能应该是功能的一个重要参考,特别是在大数据的背景之下!写SQL语句时如果仅考虑业务逻辑,而不去考虑语句效率问题,有可能导致严重的效率问题,导致功能不可用或者资源消耗过大.其中的一种情况是,处理 ...

  10. servlet中地址详细分析

    path路径的写法 假设; 项目名为day01 webroot下存放静态文件demo.html 转发 request.getRequestDispatcherType("path" ...