[再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_{L^p(\bbR^n)}^\frac{1}{n}. \eex$$
[再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 使用Python的Mock库进行PySpark单元测试
测试是软件开发中的基础工作,它经常被数据开发者忽视,但是它很重要.在本文中会展示如何使用Python的uniittest.mock库对一段PySpark代码进行测试.笔者会从数据科学家的视角来进行描述 ...
- Springboot项目配置druid数据库连接池,并监控统计功能
pom.xml配置依赖 <!-- https://mvnrepository.com/artifact/com.alibaba/druid --> <dependency> & ...
- Hadoop Yarn配置项 yarn.nodemanager.resource.local-dirs探讨
1. What is the recommended value for "yarn.nodemanager.resource.local-dirs"? We only have ...
- R语言学习——数据框
> #数据框可以包含不同模式(数值型.字符型.逻辑型等)的数据,是R中最常处理的数据结构.数据框可以通过函数data.frame()创建:mydata<-data.frame(coll,c ...
- 使用maven时出现Failure to transfer 错误的解决方法
在eclipse里使用maven,连接nexus私服. 添加依赖之后,总是报添加的依赖jar文件找不到,但是在nexus的库里面能找到这个依赖的jar文件,但是在本地的maven库里面找不到,于是我将 ...
- 偶现bug如何处理?
请先允许我对此类bug进行吐槽,相信做测试的同学都碰见过这种bug! 我们在测试过程中经常会碰见一类很头疼的bug,就是偶现性的bug,所谓偶现性,是相对于必现而言,这类bug有些可以有重现路径,但是 ...
- yum 彻底删除nodejs,重新安装
第一步 用自带的包管理先删除一次 yum remove nodejs npm -y1手动删除残留 进入 /usr/local/lib 删除所有 node 和 node_modules文件夹进入 /us ...
- HTML之超链接
图像标签 图像标签为 <img> ,它是行内元素,其主要功能是在网页里面插入图像,所插入图片由属性 scr 属性决定.主要格式为 <img scr="URL"&g ...
- 工具(3): 转换Excel表格到MarkDown:exceltk
源码和下载: 0.1.3 mac: https://github.com/fanfeilong/exceltk/blob/master/pub/exceltk.0.1.3.pkg windows: h ...
- Ubuntu16.04安装TensorFlow及Mnist训练
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com TensorFlow是Google开发的开源的深度学习框架,也是当前使用最广泛的深度学习框架. 一.安 ...