题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=4008

思路

神仙啊

\(f[i][j]表示第i个点有j次机会(不管成功与否)\)

\(f[i][j]=f[i-1][j]*(1-p[i-1])^p\)

第i-1个j次都失败

\(f[i][j]=f[i-1][j+1]*(1-(1-p[i-1]))^{p+1}\)

第i-1个j+1次有一次成功过

1-其他的概率或者orz

等比数列求和

答案就是\(\sum\limits _{1}^ {n} \sum\limits _{1}^{r} f[i][j]*(1-(1-p[i])^{j-1})*w[i]\)

边界f[0][r]=1(o( ̄▽ ̄)d)

错误

dp真的就是不会就0,会就A呀

debug都不用

代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=507;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,r,d[N];
double p[N],f[N][N];
double q_pow(double a,int b) {
double ans=1;
while(b) {
if(b&1) ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
}
void solve() {
memset(f,0,sizeof(f));
n=read(),r=read();
for(int i=1;i<=n;++i) {
scanf("%lf",&p[i]);
d[i]=read();
}
f[0][r]=1;
double ans=0;
for(int i=1;i<=n;++i) {
for(int j=1;j<=r;++j) {
f[i][j]=f[i-1][j]*q_pow(1.0-p[i-1],j)
+f[i-1][j+1]*(1.0-q_pow(1-p[i-1],j+1));
ans+=f[i][j]*(1-q_pow(1-p[i],j))*d[i];
}
}
printf("%lf\n",ans);
}
int main() {
// freopen("a.in","r",stdin);
int T=read();
while(T--)
solve();
return 0;
}

bzoj4008: [HNOI2015]亚瑟王 dp的更多相关文章

  1. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  2. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  3. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  4. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  5. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  6. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  7. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  8. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  9. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

随机推荐

  1. JS中常用的输出方式(五种)

    1.alert("要输出的内容"); ->在浏览器中弹出一个对话框,然后把要输出的内容展示出来 ->alert都是把要输出的内容首先转换为字符串然后在输出的 2.doc ...

  2. STL之Set和multiset容器

    1.Set和multiset容器 1)set是一个集合容器,其中所包含的元素是唯一的,集合中的元素按一定的顺序排列.元素插入过程是按排序规则插入,所以不能指定插入位置. 2)set采用红黑树变体的数据 ...

  3. jQuery工具--jQuery.isNumeric(value)和jQuery.trim(str)

    jQuery.isNumeric(value) 概述 确定它的参数是否是一个数字. $.isNumeric() 方法检查它的参数是否代表一个数值.如果是这样,它返回 true.否则,它返回false. ...

  4. XML系列之--解析电文格式的XML(二)

    上一节介绍了XML的结构以及如何创建.讲到了XML可作为一种简单文本存储数据,把数据存储起来,以XML的方式进行传递.当接收到XML时,必不可少的就是对其进行解析,捞取有效数据,或者将第三方数据以节点 ...

  5. redis相关问题

    什么是Redis?Redis 是一个使用 C 语言写成的,开源的 key-value 数据库..和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表 ...

  6. Locust 分布式测试

    转:http://www.testclass.net/locust/distributed/ 参考:官方文档 分布式运行Locust 一旦单台机器不够模拟足够多的用户时,Locust支持运行在多台机器 ...

  7. python模板字符串和格式化字符串

    模板字符串:用string模块里的Template Template()里面把字符串中某个值用设置变量${key}的方式先写好,然后在substitute()的方式把变量用其他值代替,就完成了字符串的 ...

  8. Linux基础命令---ifdown、ifup

    ifup ifup指令用来启动网络接口设备,设备必须是定义在“/etc/sysconfig/network-scripts/ifcfg-ethX”或者“/etc/sysconfig/network”的 ...

  9. Linux服务器配置---安装nfs

    安装nfs NFS是Network File System的缩写,即网络文件系统.客户端通过挂载的方式将NFS服务器端共享的数据目录挂载到本地目录下. 由于NFS支持的功能很多,不同功能会使用不同程序 ...

  10. 在CentOS 6.3中安装与配置cmake

    安装说明安装环境:CentOS-6.3安装方式:源码编译安装软件:cmake-2.8.10.2.tar.gz下载地址:http://www.cmake.org/cmake/resources/soft ...