函数文件1:real_fun.m

 function f=real_fun(x0,t0)
%精确解
f=4*x0*(1-x0)*sin(t0);

函数文件2:F.m

 function f=F(N,u,U,t,h1,h2)
%非线性方程组
%h1是x的步长,h2是t的步长
%u表示迭代节点,上一时刻的数值解
%h表示时间节点上的步长
%N表示空间节点的步数
a0=0.5*t^4*h2*N^2;
f(1,1)=a0*(U(2)^2-2*U(1)^2)+h2*fi(h1,t)+u(1)-U(1);
f(N-1,1)=a0*(-2*U(N-1)^2+U(N-2)^2)+h2*fi((N-1)*h1,t)+u(N-1)-U(N-1);
for p=2:N-2
f(p,1)=a0*(U(p+1)^2-2*U(p)^2+U(p-1)^2)+h2*fi(p*h1,t)+u(p)-U(p);
end

函数文件3:fi.m

 function f=fi(x0,t0)
%等式右边的f函数
f=4*x0*(1-x0)*cos(t0)-16*t0^4*(6*x0^2-6*x0+1)*(sin(t0))^2;

函数文件4:Jacobian.m

 function g=Jacobian(n,u,t,h1,h2)
%计算每个时间节点的牛顿迭代过程中的雅可比矩阵
%u表示迭代初值,上一时刻的数值解作为迭代初值
a=0.5*t^4*h2*n^2;
g=zeros(n-1);
g(1,2)=2*a*u(2);
g(1,1)=-4*a*u(1);
g(n-1,n-1)=-4*a*u(n-1);
g(n-1,n-2)=2*a*u(n-2);
for p=2:n-2
g(p,p+1)=2*a*u(p+1);
g(p,p)=-4*a*u(p);
g(p,p-1)=2*a*u(p-1);
end
g=g-eye(n-1);

函数文件5:Newtond.m

 function x=Newtond(n,u,t,h1,h2)
%使用修改后的牛顿迭代,可以不求雅可比de逆
%U中间代初值
%u起始迭代初值
U=u;
tol=0.5e-5;
% Jacobi=Jacobian(n,u,t,h1,h2);%每隔k步求一次雅可比
x1=U-Jacobian(n,u,t,h1,h2)\F(n,u,U,t,h1,h2);
while (norm(x1-U,1)>=tol)
%数值解的1范数是否在误差范围内
U=x1;
x1=U-Jacobian(n,u,t,h1,h2)\F(n,u,U,t,h1,h2);
end
x=x1;%不动点

脚本文件:

 tic;
clc
clear
N=100;
M=1000;
t_h=1/M;%t的步长
x_h=1/N;%x的步长
x=0:x_h:1;%x的节点
ti=0:t_h:0.5;%t的节点
%********************真解**************************
for i=1:length(x)
for j=1:length(ti)
real_Z(i,j)=real_fun(x(i),ti(j));
end
end
%********************真解**************************
%********************数值解**************************
ui=zeros(length(x)-2,1);%牛顿迭代初值
Z=zeros(length(x),length(ti));
for i=1:length(ti)-1
Z(2:length(x)-1,i+1)=Newtond(length(x)-1,ui,ti(i+1),x_h,t_h);%t(i+1)时间的牛顿数值解
ui=Z(2:length(x)-1,i+1);%牛顿迭代初值,上一时刻的数值解作为迭代初值
end %********************数值解**************************
[X,Y]=meshgrid(x,ti);
subplot(2,2,1),
mesh(X,Y,real_Z');
xlabel('x');ylabel('t');zlabel('u');title('analytical solution');
subplot(2,2,2),
mesh(X,Y,Z');
xlabel('x');ylabel('t');zlabel('u');title('numerical solution');
subplot(2,2,3),
mesh(X,Y,real_Z'-Z');
xlabel('x');ylabel('t');zlabel('u');title('error solution');
title('牛顿迭代法');
grid on;
toc;

效果图:

Matlab:非线性热传导(抛物方程)问题的更多相关文章

  1. Matlab:线性热传导(抛物线方程)问题

    函数文件1:real_fun.m function f=real_fun(x0,t0) f=(x0-x0^2)*exp(-t0); 函数文件2:fun.m function f=fun(x0,t0) ...

  2. MATLAB 符号变量表达式 + 方程求解

    源代码见文末 部分源代码: % 符号变量 两种表达方式 a=sym('a'); class(a); syms b; b; % 符号常量 c=sym('); c; % 符号表达式 三种表达方式 f1=' ...

  3. Matlab:非线性高阶常微分方程的几种解法

    一.隐式Euler: 函数文件1: function b=F(t,x0,u,h) b(,)=x0()-h*x0()-u(); b(,)=x0()+*h*x0()/t+*h*(*exp(x0())+ex ...

  4. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

  5. matlab 万能实用的非线性曲线拟合方法

    ——转载网络 在科学计算和工程应用中,经常会遇到需要拟合一系列的离散数据,最近找了很多相关的文章方法,在这里进行总结一下其中最完整.几乎能解决所有离散参数非线性拟合的方法 第一步:得到散点数据 根据你 ...

  6. PDE工具箱的简单使用

    转载自Here matlab的PDE工具箱的简单使用 问题选择 边界条件选择 菜单按钮和简单使用 命令行输入pdetool,打开GUI编辑界面如下: 注意到工具栏上,就是我们要用到的,从左到右依次使用 ...

  7. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  8. Scipy-数值计算库

    Scipy在Numpy的基础上则加了众多的数学计算,科学计算以及工程计算中常用的模块,例如线性代数,常微分方程的数值求解,信号处理,图像处理,系数矩阵等.在本章中,将通过实例介绍Scipy中常用的的一 ...

  9. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

随机推荐

  1. 【Hadoop 分布式部署 一 :分布式部署准备虚拟机 】

    一.将IP配置为静态 按照 下面的操作将IP配置为静态IP  这个静态的IP地址 是你自己设置的,只要符合虚拟机的IP段就可以.最后点击 Apply  需要root密码 将网络断开 (在网络图标左键  ...

  2. spring与mybatis四种整合方法

    转载: 1.采用数据映射器(MapperFactoryBean)的方式,不用写mybatis映射文件,采用注解方式提供相应的sql语句和输入参数.   (1)Spring配置文件: <!-- 引 ...

  3. HDU 1241 Oil Deposits(石油储藏)

    HDU 1241 Oil Deposits(石油储藏) 00 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)   Probl ...

  4. PHP变量的值类型和引用类型

    PHP 变量在内存中保存的并不直接是值的内容而是值的地址.比如: $a = 1; 从表面上看起来似乎是 $a 直接存储了 1 这个值.但是实际情况是,PHP 解释器创建了变量 $a , 将值 1 存入 ...

  5. NYOJ 1277Decimal integer conversion (第九届河南省省赛)

    XiaoMing likes mathematics, and heis just learning how to convert numbers between different bases , ...

  6. 浅谈 Java JPDA

    前言 程序员在坊间有非常多有趣的故事,其中就有这么一则:”这个在我的电脑上是好的,没问题的呀,诺,你看咯,一定是你打开姿势不正确,浏览器版本不正确,操作系统不统一等,总之不是我代码问题(傲娇)”.看到 ...

  7. MYSQL常用函数(时间和日期函数)Java中

    CURDATE()或CURRENT_DATE() 返回当前的日期 CURTIME()或CURRENT_TIME() 返回当前的时间 DATE_ADD(date,INTERVAL int keyword ...

  8. sublime text---注释

    Sublime在进行前端开发时非常棒,当然也少不了众多的插件支持,DocBlocker是在Sublime平台上开发一款自动补全代码插件,支持JavaScript (including ES6), PH ...

  9. stm32cube使用

    1.使用stm32cube生成CAN代码注意事项: a.需要手动配置CAN过滤器 { CAN_FilterConfTypeDef sFilterConfig; uint32_t filterID = ...

  10. spring cloud: Hystrix(七):Hystrix的断容器监控dashboard

    Hystrix的断容器监控dashboard. dashboard是用来监控Hystrix的断容器监控的,图形化dashboard是如何实现指标的收集展示的. dashboard 本地端口8730 项 ...