多源第k短路 (ford + 重新定义编号) / 出发点、终点确定的第k短路 (Spfa+ 启发搜索)
第k短路
Description
一天,HighLights实在是闲的不行,他选取了n个地点,n各地点之间共有m条路径,他想找到这m条路径组成的第k短路,你能帮助他嘛?Input 第一行三个正整数,地点的数量n(2 <= n <= 2e5),边的数量m(1 <= m <= 2e5),k(1 <= k <=
min(m, 200))。接下来m行,每行三个整数,边的一个顶点u(1<=u<=n),边的另一个顶点v(1<=v<=n),边的权值w(1<=w<=1e5),代表u有一条到v权值为w的单向边。
Output 输出第k短路的权值。
Output
Sample Input 1
4 4 3
1 3 27
1 4 16
1 2 15
2 4 3
Sample Output 1
16
思路
- 这一题的前k短路径 是 m 条边组成的所有路径中选则前 第k短的路径(哎,,当时没有读好题),由于所给的 k的取值范围小于 m (但是给 n、m的范围都特别大。。),所以我们要求的前 第k条路经一定出现在 ,把 m 条路经按权值从小到大排序后,取前 k 条边 组成的 子图 中的第k短路径。。这样由于 k 比较小,那么选取的边的数量 就比较小,构成的子图规模就小,然后再把这个 子图 用 Ford算法跑一边,求出任意点最短路径,最后把所有路径 排一下序,取第k个就是答案了,,,,,,但是还有一点操作要注意,,那就是排序完后组成前k条边的节点编号 可能是很大的,我们需要用 set或map容器 重新定义一下编号。。(否则由于某些节点编号过大 存放子图的 二维数组 就没开出来)
来张图,描述启发搜索过程。。。。。。。。。。。。。
代码
#include<iostream>
#include<cstdio>
#include<map>
#include<vector>
#include<set>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 2e5 + 5;
const int maxm = 1e3 + 5;
struct Edge
{
int u,v,w;
bool operator < (const Edge & a) const
{
return w < a.w;
}
} edge[maxn];
int G[maxm][maxm];
set<int> st;
map<int, Edge> mp;
int main()
{
//freopen("T.txt","r",stdin);
int n,m,k;
scanf("%d %d %d", &n, &m, &k);
//取出前k小边
for(int i = 1; i <= m; i ++)
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
sort(edge + 1, edge + 1 + m);
//对出现在 前k小的边进行重新编号
for(int i = 1; i <= k; i ++)
{
st.insert(edge[i].u);
st.insert(edge[i].v);
}
int len = 0;
int id[maxn]; //转化 id 用到的
for(auto x : st)
id[x] = ++ len;
//初始化、建前k条边组成的子图
for(int i = 1; i <= len; i ++)
for(int j = 1; j <= len; j ++)
if(i == j) G[i][j] = 0;
else G[i][j] = INF;
for(int i = 1; i <= k; i ++)
G[id[edge[i].u]][id[edge[i].v]] = edge[i].w;
//ford 算法
for(int mid = 1; mid <= len; mid ++)
for(int i = 1; i <= len; i ++)
for(int j = 1; j <= len; j ++)
G[i][j] = min(G[i][j], G[i][mid] + G[mid][j]);
int res[maxm];
int t = 0;
for(int i = 1; i <= len; i ++)
for(int j = 1; j <= len; j ++)
{
if(i == j) continue;
if(G[i][j] == INF) continue;
res[t ++] = G[i][j];
}
sort(res, res + t);
printf("%d", res[k - 1]);
return 0;
}
Remmarguts’ Date(第K短路 正版)
Time Limit: 4000MS Memory Limit: 65536K Total Submissions:
43103 Accepted: 11901 Description“Good man never makes girls wait or breaks an appointment!” said the
mandarin duck father. Softly touching his little ducks’ head, he told
them a story.“Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom.
One day their neighboring country sent them Princess Uyuw on a
diplomatic mission.”“Erenow, the princess sent Remmarguts a letter, informing him that she
would come to the hall and hold commercial talks with UDF if and only
if the prince go and meet her via the K-th shortest path. (in fact,
Uyuw does not want to come at all)”Being interested in the trade development and such a lovely girl,
Prince Remmarguts really became enamored. He needs you - the prime
minister’s help!DETAILS: UDF’s capital consists of N stations. The hall is numbered S,
while the station numbered T denotes prince’ current place. M muddy
directed sideways connect some of the stations. Remmarguts’ path to
welcome the princess might include the same station twice or more than
twice, even it is the station with number S or T. Different paths with
same length will be considered disparate. InputThe first line contains two integer numbers N and M (1 <= N <= 1000, 0
<= M <= 100000). Stations are numbered from 1 to N. Each of the
following M lines contains three integer numbers A, B and T (1 <= A, B
<= N, 1 <= T <= 100). It shows that there is a directed sideway from
A-th station to B-th station with time T.The last line consists of three integer numbers S, T and K (1 <= S, T
<= N, 1 <= K <= 1000). OutputA single line consisting of a single integer number: the length (time
required) to welcome Princess Uyuw using the K-th shortest path. If
K-th shortest path does not exist, you should output “-1” (without
quotes) instead. Sample Input
2 2
1 2 5
2 1 4
1 2 2
Sample Output
14
Source
思路
- 这一题才是我想错了的 前k短路径,它要求是 从出发点 s-> 到 终点e 经过 单向边(
路可以重复走。。
)的所有路径中 第k短的路径是多长。。。。。。 - 解决这一题,我们可以用 启发搜索(使用这个方法主要是因为 他可以比避免 许多没有用的搜索,这样在数据量大的时候 也能过题),,其实我觉得它就是bfs的优化版,,,用这个方法来搜索 我们所需要的路径,对于 这个搜索重要的就是这个表达式子:
fx = gx + hx
, hx是我们的启发函数:而对应这一题,启发函数所确定的每一个节点到 终点e 的预估距离,我们可以 通过 Spfa算法 以终点e 作为起点,并把所有的边 逆过来跑一边,这就能求出 每个节点到终点的最短距离 hx了 ,gx是 起点s到 当前图中的某个节点的最短距离(这个距离是在搜索的过程 根据 边权值 来求),那么我们 启发搜索的所需 fx 就可求出来了。。。。,那么重要的是为神马这个方法,求出来的是的第 k 短路径的是准确的,我们可以这样考虑:随着搜索的不断过程,我们不短选取小的 fx小的点作为起点 放入优先级队列,我们要考虑,某个点的第k短的路径,由于是优先级队列 那么 fx(从s到e的距离)小的总是排在前边,先出优先级队列 终点是e的节点,我们只要 取第k个出队列,且终点是e的节点 答案则是我们所需要的。。。。。。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 1005;
const int maxm = 1e5 + 5;
struct Edge
{
int v,w,next;
} edge[maxm], redge[maxm];
int head[maxm], rhead[maxm], dis[maxn];
int n, m, s, e, k;
int x, y;
struct A
{
int pos,fx,gx;
bool operator < (const A& a) const //从小到大排序
{
if(fx == a.fx)
return gx > a.gx;
return fx > a.fx;
}
} st, ed;
void Add(int u, int v, int w)
{
edge[++ x] = (Edge){ v, w, head[u]};
head[u] = x;
//逆向存图
redge[++ y] = (Edge){ u, w, rhead[v]};
rhead[v] = y;
}
void Spfa(int s)
{
int mark[maxm];
for(int i = 1; i <= n; i ++)
dis[i] = INF,mark[i] = 0;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
mark[u] = 0;
for(int i = rhead[u]; i != -1; i = redge[i].next)
{
v = redge[i].v;
w = redge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! mark[v])
{
q.push(v);
mark[v] = 1;
}
}
}
}
}
//启发搜索
int A_star(int s, int e, int k)
{
if(s == e) k ++;
if(dis[s] == INF) return -1;
priority_queue<A> q;
q.push( (A){ s, dis[s], 0});
int cnt = 0;
while(! q.empty())
{
st = q.top(); q.pop();
if(st.pos == e) cnt ++;
if(cnt == k) return st.gx;
for(int i = head[st.pos]; i != -1; i = edge[i].next)
{
ed.pos = edge[i].v;
ed.gx = st.gx + edge[i].w;
ed.fx = ed.gx + dis[edge[i].v];
q.push(ed);
}
}
return -1;
}
void init()
{
x = 0; y = 0;
// memset(head, -1, sizeof(head));
// memset(rhead, -1, sizeof(rhead));
for(int i = 0; i <= n; i ++)
head[i] = -1, rhead[i] = -1;
}
int main()
{
//freopen("T.txt","r",stdin);
int u, v, w;
while(scanf("%d %d", &n, &m) != EOF)
{
init();
for(int i = 1; i <= m; i ++)
{
scanf("%d %d %d", &u, &v, &w);
Add(u, v, w);
}
cin >> s >> e >> k;
Spfa(e);
printf("%d\n", A_star(s, e, k));
}
return 0;
}
多源第k短路 (ford + 重新定义编号) / 出发点、终点确定的第k短路 (Spfa+ 启发搜索)的更多相关文章
- hdu6003 Problem Buyer 贪心 给定n个区间,以及m个数,求从n个区间中任意选k个区间,满足m个数都能在k个区间中找到一个包含它的区间,如果一个区间包含了x,那么 该区间不能再去包含另一个数,即k>=m。求最小的k。如果不存在这样的k,输出“IMPOSSIBLE!”。
/** 题目:hdu6003 Problem Buyer 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6003 题意:给定n个区间,以及m个数,求从n个区 ...
- 以K个为一组反转单链表,最后不足K个节点的部分也反转
package StackMin.ReverseList_offer16; public class ReverseKgroup_extend_offer16 { /** * 分组反转单链表,最后不足 ...
- php实现用短路求值原理求1+2+3+...+n(短路求值是什么)(仔细分析题干)
php实现用短路求值原理求1+2+3+...+n(短路求值是什么)(仔细分析题干) 一.总结 1.仔细分析题干,找出要点:该递归还是得递归啊 2.短路求值原理:&&就是逻辑与,逻辑与有 ...
- HDU 3440 House Man(编号排序+线性差分约束跑最短路)
House Man Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- IC开短路测试(open_short_test),编程器测试接触不良、开短路
http://kitebee.meibu.com/forum.php?mod=viewthread&tid=69654&extra=page%3D5 IC开短路测试(open_shor ...
- CodeForces - 449B 最短路(迪杰斯特拉+堆优化)判断最短路路径数
题意: 给出n个点m条公路k条铁路. 接下来m行 u v w //u->v 距离w 然后k行 v w //1->v 距离w 如果修建了铁路并不影响两点的最短距离, ...
- 转:最小区间:k个有序的数组,找到最小区间使k个数组中每个数组至少有一个数在区间中
转:http://www.itmian4.com/thread-6504-1-1.html 最小区间原题 k个有序的数组,找到最小的区间范围使得这k个数组中,每个数组至少有一个数字在这个区间范围内.比 ...
- Codeforces 61E Enemy is weak 乞讨i<j<k && a[i]>a[j]>a[k] 对数的 树阵
主题链接:点击打开链接 意大利正在寻求称号 i<j<k && a[i]>a[j]>a[k] 的对数 假设仅仅有2元组那就是求逆序数的做法 三元组的话就用一个树状 ...
- [Swift]LeetCode857. 雇佣 K 名工人的最低成本 | Minimum Cost to Hire K Workers
There are N workers. The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...
随机推荐
- 峰哥说技术:09-Spring Boot整合JSP视图
Spring Boot深度课程系列 峰哥说技术—2020庚子年重磅推出.战胜病毒.我们在行动 09 峰哥说技术:Spring Boot整合JSP视图 一般来说我们很少推荐大家在Spring boot ...
- 逐浪CMS全面升级为.NET Core 3.0性能大提升
微软发布了.Net Core 3.0正式版,逐浪CMS也在第一时间做了全面升级,并做了一系列的优化和调整,性能大幅提升,并解决了一些历史遗留问题,添加了一些新的功能.如后台固有小程序功能做了升级,功能 ...
- 用libvlc 抓取解码后的帧数据
vlc是一套优秀的开源媒体库,其特点是提供了完整的流媒体框架, 用它可以非常方便的实现抓取解码帧的功能. 与此功能有关的关键API为 libvlc_video_set_callbacks /*设置回调 ...
- iconfont字体图标的使用方法(转)
我之前因为项目用bootstrap比较多,所以使用font awesome字体图标比较多,后来接触到了iconfont,发现想要的什么图标都有,还可以自定义图标,非常强大!之前看了一波教程,觉得繁琐, ...
- SQL的模糊查询(转载)
本文由转载而来: 原文地址链接:http://www.cnblogs.com/GT_Andy/archive/2009/12/25/1921914.html 在进行数据库查询时,有完整查询和模糊查询之 ...
- Dubbo之服务暴露
前言 本文 Dubbo 使用版本2.7.5 Dubbo 通过使用dubbo:service配置或@service在解析完配置后进行服务暴露,供服务消费者消费. Dubbo 的服务暴露有两种: 远程暴露 ...
- 龙生九子-浅谈Java的继承
龙生九子-浅谈Java的继承 书接上回,我们之前谈过了类和对象的概念,今天我来讲一讲面向对象程序设计的另外一个基本概念-继承 目录 为什么需要继承 自动转型与强制转型 继承能干啥 复写和隐藏 supe ...
- Zend Studio 13.6.1 汉化及安装方法详解
Zend Studio 13.6.1是一套专业开发人员使用的集成开发环境 (IDE),具备功能强大的专业编辑工具和调试工具,支持PHP语法加亮显示,支持语法自动填充功能,支持书签功能,支持语法自动缩排 ...
- Git&Github入门
Github: 仓库repository: 存放项目代码,每个项目对应一个项目 收藏star: 收藏 复制克隆项目(Fork): 发起请求Pull Reques: 别人改进你的代码,如果觉得不错可以合 ...
- MySQL:REPLACE函数的使用
原文链接 REPLACE函数功能 REPLACE(columnName, search_str, replace_str) 查找columnName字段中所有search_str,并替换为replac ...