TensorFlow从0到1之TensorFlow损失函数(12)
正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数。本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数。
声明一个损失函数需要将系数定义为变量,将数据集定义为占位符。可以有一个常学习率或变化的学习率和正则化常数。
在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量。这里应该在代码之前定义这些全局参数:

在标准线性回归的情况下,只有一个输入变量和一个输出变量:

在多元线性回归的情况下,输入变量不止一个,而输出变量仍为一个。现在可以定义占位符X的大小为 [m,n],其中 m 是样本数量,n 是特征数量,代码如下:

在逻辑回归的情况下,损失函数定义为交叉熵。输出 Y 的维数等于训练数据集中类别的数量,其中 P 为类别数量:

如果想把 L1 正则化加到损失上,那么代码如下:

对于 L2 正则化,代码如下:

由此,你应该学会了如何实现不同类型的损失函数。那么根据手头的回归任务,你可以选择相应的损失函数或设计自己的损失函数。在损失项中也可以结合 L1 和 L2 正则化。
拓展阅读
为确保收敛,损失函数应为凸的。一个光滑的、可微分的凸损失函数可以提供更好的收敛性。随着学习的进行,损失函数的值应该下降,并最终变得稳定。
TensorFlow从0到1之TensorFlow损失函数(12)的更多相关文章
- TensorFlow从0到1之TensorFlow优化器(13)
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...
- TensorFlow从0到1之TensorFlow Keras及其用法(25)
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...
- TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...
- TensorFlow从0到1之TensorFlow实现反向传播算法(21)
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...
- TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...
- TensorFlow从0到1之TensorFlow超参数及其调整(24)
正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...
- TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)
TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...
- TensorFlow从0到1之TensorFlow常用激活函数(19)
每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...
- TensorFlow从0到1之TensorFlow实现多元线性回归(16)
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...
随机推荐
- JUC整理笔记一之细说Unsafe
JUC(java.util.concurrent)的开始,可以说是从Unsafe类开始. Unsafe 简介 Unsafe在sun.misc 下,顾名思义,这是一个不安全的类,因为Unsafe类所操作 ...
- vue-cli 如何修改或删除预设preset记录
preset其实是你在create新vue项目的时候,生成的插件配置项预设,也就是你在项目中需要用到的插件安装成功了之后,会生成一个关于preset的文件,当你再次create新的vue项目的时候,就 ...
- 一、$HTML, HTTP,web综合问题
1.前端需要注意哪些SEO 合理的title.description.keywords:搜索对着三项的权重逐个减小,title值强调重点即可,重要关键词出现不要超过2次,而且要靠前,不同页面title ...
- 使用vue2.0创建的项目的步骤
1.由于vue项目依赖 node.js npm 需要先安装. 若没有请先安装,请百度 //检查是否有node.js npm vue win+r 输入cmd 输入node -v 回车 会出 ...
- springboot使用Jwt处理跨域认证问题
在前后端开发时为什么需要用户认证呢?原因是由于HTTP协定是不存储状态的,这意味着当我们透过账号密码验证一个使用者时,当下一个request请求时他就把刚刚的资料忘记了.于是我们的程序就不知道谁是谁了 ...
- python的性能测试(timeit)
import timeit def test(): lista = [] listb = [] for i in range(100): lista.append(i) for i in range( ...
- 【Windows】win10:硬件良好,软件系统出错
平台:戴尔G3, win10 现象:能正常开机,开机后前几分钟内能打开部分应用,经过大约两分钟后系统无法正常使用. 分析:此次问题出现再新购买的笔记本电脑中,鉴于电脑刚买,硬件坏的可能性很小,然而为了 ...
- [Python基础]004.语法(3)
语法(3) 方法 定义 调用 参数 返回 模块 引入模块 写模块 模块名称 dir() 方法 定义 语法 def 方法名(参数): 返回值 return 没有指定返回值的方法,默认返回空值 None ...
- 认证(Authentication)和授权(Authorization)总结
身份认证是验证你的身份,一旦通过验证,即启用授权.你所拥有的身份可以进行哪些操作都是由授权规定.例如,任何银行客户都可以创建一个账户(如用户名),并使用该账户登录该银行的网上服务,但银行的授权政策必须 ...
- Alpha冲刺——4.30
这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.规 ...