「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie
输入格式
第一行一个整数 nnn,接下来 n−1n-1n−1 行每行三个整数 u,v,wu,v,wu,v,w,表示 u,vu,vu,v 之间有一条长度为 www 的边。
输出格式
输出一行一个整数,表示答案。
样例
样例输入
4
1 2 3
2 3 4
2 4 6
样例输出
7
样例解释
最长的异或和路径是 1→2→31\to 2\to 31→2→3 ,它的长度是 3⨁4=73 \bigoplus 4=73⨁4=7。
注意:结点下标从 111 开始到 NNN。
注:x⨁yx \bigoplus yx⨁y 表示 xxx 与 yyy 按位异或。
数据范围与提示
对于 100%100\%100% 的数据,1≤n≤105,1≤u,v≤n,0≤w<2311\le n\le 10^5,1\le u, v \le n,0 \le w < 2^{31}1≤n≤105,1≤u,v≤n,0≤w<231
题解
首先对于树上两点路径的异或值,可以用一个树上前缀和维护。
记$sum[x]$为$x$到祖先的异或和。
由于异或有:$a ⨁ a = 0$
所以如下图,在$sum[u] ⨁ sum[v]$时,lca以上的屎色线已经被消掉了。
所以$ans=sum[u] ⨁ sum[v]$
问题转化为:有1e5个数,要求其中两数异或的最大值。
于是变为「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie
于是这道题就可以由两道看起来离得很远的题拼起来而成了。
编号 题目 状态 分数 总时间 内存 代码 / 答案文件 提交者 提交时间
# #. 「一本通 2.3 练习 」The XOR-longest Path Accepted ms KiB C++ / 1.8 K qwerta -- :: #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
char ch=getchar();
int x=;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x;
}
const int MAXN=1e5+;
struct emm{
int e,f,v;
}a[*MAXN];//用来建树
int h[MAXN];
int tot=;
void con(int x,int y,int l)//连树边
{
a[++tot].f=h[x];
h[x]=tot;
a[tot].e=y;
a[tot].v=l;
a[++tot].f=h[y];
h[y]=tot;
a[tot].e=x;
a[tot].v=l;
return;
}
int d[MAXN],w[MAXN];//记深度和前缀和
void dfs(int x)//dfs遍历树
{
for(int i=h[x];i;i=a[i].f)
if(!d[a[i].e])
{
w[a[i].e]=(w[x] xor a[i].v);
d[a[i].e]=d[x]+;
dfs(a[i].e);
}
return;
}
struct ahh{
int nxt[];
}tr[];//Trie树
int cnt=;
int b[];//用来按位拆分
void add(int x)
{
int j=-;
memset(b,,sizeof(b));
while(x)//拆二进制
{
b[++j]=x&;
x>>=;
}
int k=;
for(int j=;j>=;--j)
{
if(!tr[k].nxt[b[j]])
tr[k].nxt[b[j]]=++cnt;
k=tr[k].nxt[b[j]];
}
return;
}
long long find(int x)//返回与x异或的最大结果
{
int j=-;
memset(b,,sizeof(b));
while(x)
{
b[++j]=x&;
x>>=;
}
long long now=;
int k=;
for(int j=;j>=;--j)
{
if(tr[k].nxt[-b[j]])//尽量往不一样的走
{
now+=(<<j);
k=tr[k].nxt[-b[j]];
}
else k=tr[k].nxt[b[j]];
}
return now;
}
int main()
{
//freopen("a.in","r",stdin);
int n=read();
for(int i=;i<n;++i)
{
int u=read(),v=read(),w=read();
con(u,v,w);//连树边
}
int s=min(,n);
d[s]=;
dfs(s);
long long ans=;
for(int i=;i<=n;++i)
add(w[i]);//加前缀和
for(int i=;i<=n;++i)
ans=max(ans,find(w[i]));//记录答案
cout<<ans;
return ;
}
「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie的更多相关文章
- 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie
题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1≤r1<l2≤r2≤N,x⨁yx\bigoplus yx⨁y 表示 ...
- LOJ#10117. 「一本通 4.1 练习 2」简单题
LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map
题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...
- 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP
题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...
- 「LOJ#10015」「一本通 1.2 练习 2」扩散(并查集
题目描述 一个点每过一个单位时间就会向 444 个方向扩散一个距离,如图所示:两个点 a .b 连通,记作 e(a,b),当且仅当 a .b的扩散区域有公共部分.连通块的定义是块内的任意两个点 u.v ...
- #10042. 「一本通 2.1 练习 8」收集雪花 || 离散化 || 双指针法 || C++ || LOJ
题目:#10042. 「一本通 2.1 练习 8」收集雪花 看到网上没有这道题的题解,所以写一下. 要标记数字是否存在,看到x<=1e9,所以考虑用离散化,然后开一个last数组,last[i] ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
随机推荐
- erlang的timer定时器浅析
timer作为其计时器: erlang的计时器timer是通过一个唯一的timer进程实现的,该进程是一个gen_server,用户通过timer:send_after和timer:apply_aft ...
- Top 10 Open Source Bug Tracking System系统
Bugzilla http://www.bugzilla.org/ Mantis php http://www.mantisbt.org/ Trac Python also provides wiki ...
- 02 redis通用命令操作
set hi hello 设置值 get hi 获取值 keys * 查询出所有的key memcached 不能查询出所有的key keys *h 模糊查找key keys h[ie] 模糊查找 k ...
- 目标检测之hog(梯度方向直方图)---hog简介0
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功 ...
- VxWorks启动过程具体解释(下)
上一节主要是从映像的分类和各种映像的大致载入流程上看VxWorks的启动过程,这一节让我们从函数级看一下VxWorks的启动过程: 1. Boot Image + Loadable Images: 以 ...
- React常用方法手记
1.Reactjs 如何获取子组件的key值?请问antd中table自定义列render方法怎么获取当前第几列? https://segmentfault.com/q/101000000453235 ...
- iOS 10 的杂碎资料
兼容iOS 10 资料整理笔记 1.Notification(通知) 自从Notification被引入之后,苹果就不断的更新优化,但这些更新优化只是小打小闹,直至现在iOS 10开始真正的进行大 ...
- 补充ajax分页的代码
1.主页代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- jquery获取form表单中的内容,并将表单内容更新到datagrid的一行
//执行不刷新页面更新所修改的行 var arr = $('#patient_form').serializeArray();//将表单中的数据格式化成数组 var m = new Array(); ...
- d3 - bar chart
用 D3.js 做一个简单的柱形图. 做柱形图有很多种方法,比如用 HTML 的 div 标签,或用 svg . 推荐用 SVG 来做各种图形.SVG 意为可缩放矢量图形(Scalable Vecto ...
