版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明。

从SGD(SGD指mini-batch gradient descent)和Adam两个方面说起。

更详细的可以看:深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(醍醐灌顶!)

SGD

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

其中,是学习率,是梯度 SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新。

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

  • 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
  • SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】
  • 参数取值震荡严重。(我自己添加的)

Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间

一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

优化算法的一般框架:

后续复习的时候,存在了一个疑问,上述方法说对解决稀疏数据十分有效,那么哪里体现出了对稀疏数据有效呢?

参数更新越频繁,二阶动量越大,学习率就越小。

这篇也不错,之后复习看:

Adam和学习率衰减(learning rate decay)

【深度学习】关于Adam的更多相关文章

  1. 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  2. 【深度学习】深入理解优化器Optimizer算法(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  3. 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)

    转自: https://zhuanlan.zhihu.com/p/22252270    ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/de ...

  4. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  5. 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

    机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...

  6. 深度学习面试题03:改进版梯度下降法Adagrad、RMSprop、Momentum、Adam

    目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代 ...

  7. 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点

    https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...

  8. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. 朴素贝叶斯算法源码分析及代码实战【python sklearn/spark ML】

    一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就 ...

  2. Django:Python3.6.2+Django2.0配置MySQL 转载

    Django默认使用的数据库是python自带的SQLlite3,但SQLlite并不适用于大型的项目,因此我将数据库换成了MySQL,下面介绍下Django如何配置数据库... 我使用的版本是:Py ...

  3. Matlab Cordic 一个数开方代码,适用FPGA

    function [sqrt_value] = calsqrt(a)NormKn = ceil(log2(a)) - 1;fprintf("Normalization input data ...

  4. MySQL线程状态详解

    前言: 我们常用 show processlist 或 show full processlist 查看数据库连接状态,其中比较关注的是 State 列,此列表示该连接此刻所在的状态.那么你真的了解不 ...

  5. springboot学习笔记(二)—— springboot的启动模式设置

    把springboot的启动类图标(spring)去掉,在启动类中添加以下代码 package com.xdr.spring; import org.springframework.boot.Bann ...

  6. 关于JDBCUtils的模糊查询问题

    1.JDBCUtils的模糊查询问题解决方法 数据库jdbc工具类的模糊查询最核心的就是用like %内容%,但是我们对于界面输入进来的东西都是用?来替代的,那么就代表着我们不能吧%%写在问号旁边.否 ...

  7. Python函数的基本使用

    在编程中,无论使用什么 编程语言,函数的使用都是非常广泛的,函数能够完成特定的功能,降低编程的难度和代码重用. 1.函数的定义: 函数是一段具有特定功能的.可重用的语句组,用函数名来表示并通过函数名进 ...

  8. django项目部署服务器后无法发送邮箱 错误信息:Connection unexpectedly closed

    使用配置: python 3.7 + django 2.2.1    发送邮件模块 :  from django.core.mail import send_mail 服务器:Centos7 阿里云轻 ...

  9. CocoaPods加载第三方库

    http://code4app.com/article/cocoapods-install-usage

  10. 性能测试解读:Kyligence vs Spark SQL

    全球各种大数据技术涌现的今天,为了充分利用大量数据获得竞争优势,企业需要高性能的数据分析平台,可靠并及时地提供对海量数据的分析见解.对于数据驱动型企业,在海量数据上交互式分析的能力是非常重要的能力之一 ...