Crazy Town is a plane on which there are n infinite line roads. Each road is defined by the equation aix + biy + ci = 0,
where ai and biare
not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect.

Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks
are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step).

Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road.

Input

The first line contains two space-separated integers x1, y1 ( - 106 ≤ x1, y1 ≤ 106)
— the coordinates of your home.

The second line contains two integers separated by a space x2, y2 ( - 106 ≤ x2, y2 ≤ 106)
— the coordinates of the university you are studying at.

The third line contains an integer n (1 ≤ n ≤ 300)
— the number of roads in the city. The following n lines contain 3 space-separated integers ( - 106 ≤ ai, bi, ci ≤ 106; |ai| + |bi| > 0)
— the coefficients of the line aix + biy + ci = 0,
defining the i-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do
not belong to any one of the lines).

Output

Output the answer to the problem.

Sample test(s)
input
1 1
-1 -1
2
0 1 0
1 0 0
output
2
input
1 1
-1 -1
3
1 0 0
0 1 0
1 1 -3
output
2
Note

Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors):

这题想通后很简单,就是看A,B两点间的直线有几条,用零点法看是否一正一负就行。注意一点要分两种情况讨论,不然会爆__int64.

#include<stdio.h>

#include<string.h>

int main()

{
__int64 x1,y1,x2,y2,i,j,a,b,c;
int n,sum;
while(scanf("%I64d%I64d",&x1,&y1)!=EOF)
{
scanf("%I64d%I64d",&x2,&y2);
scanf("%d",&n);
sum=0;
for(i=1;i<=n;i++){
scanf("%I64d%I64d%I64d",&a,&b,&c);
if(a*x1+b*y1+c>0 && a*x2+b*y2+c<0){
sum++;continue;
}
if(a*x1+b*y1+c<0 && a*x2+b*y2+c>0){
sum++;continue;
}
}
printf("%d\n",sum);
}

}

A. Crazy Town的更多相关文章

  1. #284 div.2 C.Crazy Town

    C. Crazy Town   Crazy Town is a plane on which there are n infinite line roads. Each road is defined ...

  2. Codeforces Round #284 (Div. 1) A. Crazy Town 计算几何

    A. Crazy Town 题目连接: http://codeforces.com/contest/498/problem/A Description Crazy Town is a plane on ...

  3. C - Crazy Town

    Problem description Crazy Town is a plane on which there are n infinite line roads. Each road is def ...

  4. Codeforces 498A Crazy Town

    C. Crazy Town time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  5. Codeforces_499C:Crazy Town(计算几何)

    题目链接 给出点A(x1,y1),B(x2,y2),和n条直线(ai,bi,ci,aix + biy + ci = 0),求A到B穿过多少条直线 枚举每条直线判断A.B是否在该直线两侧即可 #incl ...

  6. Codeforces 499C:Crazy Town(计算几何)

    题目链接 给出点A(x1,y1),B(x2,y2),和n条直线(ai,bi,ci,aix + biy + ci = 0),求A到B穿过多少条直线 枚举每条直线判断A.B是否在该直线两侧即可 #incl ...

  7. 【codeforces 499C】Crazy Town

    [题目链接]:http://codeforces.com/problemset/problem/499/C [题意] 一个平面,被n条直线分成若干个块; 你在其中的某一块,然后你想要要到的终点在另外一 ...

  8. Codeforces Round #284 (Div. 2)A B C 模拟 数学

    A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...

  9. Codeforces Round #284 (Div. 1)

    A. Crazy Town 这一题只需要考虑是否经过所给的线,如果起点和终点都在其中一条线的一侧,那么很明显从起点走点终点是不需要穿过这条线的,否则则一定要经过这条线,并且步数+1.用叉积判断即可. ...

随机推荐

  1. 【剑指Offer】链表的基本操作之创建、插入、删除

    // C++ #include<iostream> using namespace std; //链表的定义 struct ListNode { int val; ListNode* ne ...

  2. Jenkins+windows+.netcore+git+iis自动化部署入门

    什么是自动化部署,就不介绍了,喜欢直接进入主题. 一. 所需环境: 1.系统为windows10 . 2.asp.net core3.1 runtime必须安装,因为我的代码是asp.net core ...

  3. xtrabackup 备份与恢复

    书上摘抄 ---深入浅出mysql 448页  grant reload on *.* to 'backup'@'localhost' identified by '123456'; grant re ...

  4. springBoot实现redis分布式锁

    参考:https://blog.csdn.net/weixin_44634197/article/details/108308395 .. 使用redis的set命令带NX(not exist)参数实 ...

  5. ctfhub技能树—sql注入—报错注入

    打开靶机 payload 1 Union select count(*),concat((查询语句),0x26,floor(rand(0)*2))x from information_schema.c ...

  6. 开发中的你的Git提交规范吗?

    1. 前言 目前大部分公司都在使用Git作为版本控制,每个程序员每天都要进行代码的提交.很多开发者也包括我自己,有时候赶时间或者图省事,就这么提交: git commit -m "修改bug ...

  7. RabbitMQ六种工作模式有哪些?怎样用SpringBoot整合RabbitMQ

    目录 一.RabbitMQ入门程序 二.Work queues 工作模式 三.Publish / Subscribe 发布/订阅模式 四.Routing 路由模式 五.Topics 六.Header ...

  8. 不错的网站压力测试工具webbench

    webbench最多可以模拟3万个并发连接去测试网站的负载能力,个人感觉要比Apache自带的ab压力测试工具好,安装使用也特别方便. 1.适用系统:Linux 2.前期准备:yum install ...

  9. (14)-Python3之--虚拟环境virtualenv

    1.安装virtualenv pip install virtualenv 如果是在Linux下需要把virtualenv添加到/usr/bin目录下 # find / -name virtualen ...

  10. js input相关事件(转载)

    1.onfocus  当input 获取到焦点时触发. 2.onblur  当input失去焦点时触发,注意:这个事件触发的前提是已经获取了焦点再失去焦点的时候才会触发该事件,用于判断标签为空.3.o ...