BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标
BZOJ又崩了,直接贴一下人家的代码。
代码:
#include"stdio.h"
#include"string.h"
#include"math.h"
#define M 50006
#define eps 1e-10
#include"stdlib.h"
#define inf 999999999
typedef struct node
{
double x,y,dis,cos;
}P;
P p[M],q[M],pp[M];
double min(double a,double b)
{
return a<b?a:b;
}
int cmp(const void *a,const void *b)
{
if(fabs((*(struct node*)a).cos-(*(struct node*)b).cos)<eps)
return (*(struct node*)a).dis>(*(struct node*)b).dis?:-;
else
return (*(struct node*)b).cos>(*(struct node*)a).cos?:-; }
double pow(double x)
{
return x*x;
}
double Len(node p0,node p1)
{
return pow(p1.x-p0.x)+pow(p1.y-p0.y);
}
double COS(node p0,node p1)
{
double x1=p1.x-p0.x;
double y1=p1.y-p0.y;
double x2=;
double y2=;
return (x1*x2+y1*y2)/sqrt((x1*x1+y1*y1)*(x2*x2+y2*y2));
}
double cross(node p0,node p1,node p2)
{
double x1=p1.x-p0.x;
double y1=p1.y-p0.y;
double x2=p2.x-p0.x;
double y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
double dot(node p0,node p1,node p2)
{
double x1=p1.x-p0.x;
double y1=p1.y-p0.y;
double x2=p2.x-p1.x;
double y2=p2.y-p1.y;
return x1*x2+y1*y2;
}
node miss(node q1,double a,double b,node q2)//求两直线交点坐标
{
node ret;
double c1=a*q1.y-b*q1.x;
double c2=-a*q2.x-b*q2.y;
ret.x=-(b*c1+a*c2)/(a*a+b*b);
ret.y=(a*c1-b*c2)/(a*a+b*b);
return ret;
}
int main()
{
int n,i,j;
while(scanf("%d",&n)!=-)
{
node start;
int tep;
start.x=start.y=inf;
for(i=;i<n;i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
if(start.y>p[i].y)
{
start=p[i];
tep=i;
}
else if(fabs(start.y-p[i].y)<eps)
{
if(start.x>p[i].x)
{
start=p[i];
tep=i;
}
}
}
p[tep].dis=;
p[tep].cos=1.0;
for(i=;i<n;i++)
{
if(i!=tep)
{
if(fabs(p[i].x-start.x)<eps&&fabs(p[i].y-start.y)<eps)
{
p[i].dis=;
p[i].cos=1.0;
}
else
{
p[i].dis=Len(start,p[i]);
p[i].cos=COS(start,p[i]);
}
}
}
qsort(p,n,sizeof(p[]),cmp);
int tt=;
for(i=;i<n;i++)
{
if(fabs(p[i].cos-p[(i+)%n].cos)>eps||fabs(p[i].dis-p[(i+)%n].dis)>eps)
pp[tt++]=p[i];
}
if(tt==)
{
printf("%.5lf\n",0.0);
for(i=;i<;i++)
printf("%.5lf %.5lf\n",p[].x,p[].y);
continue;
}
int flag=;
for(i=;i<tt-;i++)
{
if(fabs(p[i].cos-p[i+].cos)>eps)
flag++;
}
if(!flag)
{
printf("%.5lf\n",0.0);
printf("%.5lf %.5lf\n",pp[].x,pp[].y);
printf("%.5lf %.5lf\n",pp[tt-].x,pp[tt-].y);
printf("%.5lf %.5lf\n",pp[tt-].x,pp[tt-].y);
printf("%.5lf %.5lf\n",pp[].x,pp[].y);
continue;
}
q[]=pp[tt-];//注意tt;
q[]=pp[];
q[]=pp[];
int cnt=;
for(i=;i<tt;i++)
{
while(cross(q[cnt-],q[cnt],pp[i])<)
{
cnt--;
}
q[++cnt]=pp[i];
}
int k1,k2;
k1=;
j=;
double S=inf;
double a[],b[];
int indx[];
for(i=;i<cnt;i++)
{
double w=sqrt(Len(q[i],q[(i+)%cnt]));
while(cross(q[i],q[(i+)%cnt],q[(j+)%cnt])>cross(q[i],q[(i+)%cnt],q[j%cnt]))
{
j++;
}
double high=cross(q[i],q[(i+)%cnt],q[j%cnt])/w;
while(dot(q[i],q[(i+)%cnt],q[(k1+)%cnt])>dot(q[i],q[(i+)%cnt],q[(k1)%cnt]))
{
k1++;
}
if(i==)
k2=k1;
while(dot(q[i],q[(i+)%cnt],q[(k2+)%cnt])<=dot(q[i],q[(i+)%cnt],q[(k2)%cnt]))
{
k2++;
}
double wide=(dot(q[i],q[(i+)%cnt],q[(k1)%cnt])-dot(q[i],q[(i+)%cnt],q[(k2)%cnt]))/w;
if(S>high*wide)
{
S=high*wide;//更新四个切点坐标以及旋转的直线的方向向量
indx[]=i;
indx[]=k1%cnt;
indx[]=j%cnt;
indx[]=k2%cnt;
a[]=q[(i+)%cnt].x-q[i].x;
b[]=q[(i+)%cnt].y-q[i].y;
a[]=b[];
b[]=-a[];
a[]=a[];
b[]=b[];
a[]=b[];
b[]=-a[];
}
}
printf("%.5lf\n",S);
node ret[];
start.x=start.y=inf; for(i=;i<;i++)//先找出左下角的点的坐标然后按照极角排序
{
ret[i]=miss(q[indx[i]],a[i],b[i],q[indx[(i+)%]]);
//printf("%.5lf %.5lf\n",ret[i].x,ret[i].y);
if(start.y>ret[i].y)
{
start=ret[i];
tep=i;
}
else if(fabs(start.y-ret[i].y)<eps)
{
if(start.x>ret[i].x)
{
start=ret[i];
tep=i;
} }
}
ret[tep].dis=;
ret[tep].cos=1.5;
for(i=;i<;i++)
{
if(i!=tep)
{
ret[i].dis=Len(start,ret[i]);
ret[i].cos=COS(start,ret[i]);
}
}
qsort(ret,,sizeof(ret[]),cmp);
for(i=;i<;i++)
printf("%.5lf %.5lf\n",ret[i].x,ret[i].y);
}
return ;
}
整理。
BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子的更多相关文章
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)
给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- bzoj 1185 最小矩形覆盖 —— 旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 枚举一条边,维护上.左.右方的点: 上方点到这条边距离最远,所以用叉积求面积维护: 左 ...
- LA 4728 Square ,旋转卡壳法求多边形的直径
给出一些正方形.让你求这些正方形顶点之间的最大距离的平方. //返回点集直径的平方 int diameter2(vector<Point> & points) { vector&l ...
- BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...
- POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]
题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...
随机推荐
- maven打包遇到的问题
1.javax.servlet.jsp.tagext不存在 maven打包报程序包javax.servlet.jsp.tagext不存在或者maven打包报程序包javax.servlet.jsp不存 ...
- 【bzoj2768/bzoj1934】[JLOI2010]冠军调查/[Shoi2007]Vote 善意的投票 最小割
bzoj2768 题目描述 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教育学院进行了一次大规模的调查,调查的内容就是关 ...
- [Leetcode] The minimum depth of binary tree二叉树的最小深度
Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...
- C&C++——标准库
1.什么是C&C++的标准库? C语言被发明出来时并没有什么库函数,随着C语言的流行,越来越多的厂商或者机构组织开始提供C的编译器,并且同时把经常用到的函数封装成“库”的形式发布:不同的组织发 ...
- bzoj2348
实在不懂为啥网上的题解都是二分,本人没写二分,wa的很惨结果竟然是printf("%d")的锅,改了就A了 2348: [Baltic 2011]Plagiarism Time L ...
- Ubuntu修改grub启动顺序和启动时间
sudo gedit /boot/grub/grub.cfg,输入密码,在弹出的文件中找到set default = "0",想要改为第N项默认就把0改成N-1 看到启动界面是第几 ...
- kubernetes 参考资料
kubernetes 参考资料 非常建议先花20分钟,完成这个官方的交互式指南:https://kubernetes.io/docs/tutorials/kubernetes-basics/ 这个教程 ...
- Android百度定位地图使用--文章集锦
Android百度定位API使用方法 Android百度地图开发(一)之初体验 AndroidNote013.在百度地图上画出轨迹 Android学习笔记之百度地图(分条目覆盖物:ItemizedOv ...
- RPC-Thrift(三)
TProtocol TProtocol定义了消息怎么进行序列化和反序列化的. TProtocol的类结构图如下: TBinaryProtocol:二进制编码格式: TCompactProtocol:高 ...
- 「6月雅礼集训 2017 Day1」说无可说
[题目大意] 给出n个字符串,求有多少组字符串之间编辑距离为1~8. n<=200,∑|S| <= 10^6 [题解] 首先找编辑距离有一个n^2的dp,由于发现只找小于等于8的,所以搜旁 ...