题解:首先,对于小于10000的斐波那契数,我们直接计算,当大于10000时,用公式,由于只要输出前四位,所以不用考虑浮点数的问题,算出其取log的结果:

tmp=(log(sq5/5)+n*log(0.5+sq5/2))/log(10.0)

然而为什么要取log呢,考虑这样的情况,若结果前四位为1493,那么计算的结果一定是log(10^n*1.493……)=log(1.493……)+n,那么只要减去整数部分,就得到log(1.493……),

将结果加3,得到log(1.493……)+3=log(1493.……),然后计算一下10的幂后取整就是结果了。

#include <cstdio>
#include <cmath>
using namespace std;
int main(){
int fib[100],fibs;
fib[0]=0,fib[1]=1;
for(fibs=2;fib[fibs-1]<10000;fibs++)fib[fibs]=fib[fibs-1]+fib[fibs-2];
fibs-=2;
int n;
double sq5=sqrt(5);
while(scanf("%d",&n)!=EOF){
if(n<=fibs)printf("%d\n",fib[n]);
else{
double tmp=(log(sq5/5)+n*log(0.5+sq5/2))/log(10.0);
tmp=tmp-int(tmp);
printf("%d\n",(int)pow(10,tmp+3));
}
}
return 0;
}

HDU 1568 Fibonacci的更多相关文章

  1. HDU 1568 Fibonacci 数学= = 开篇

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1568 分析:一道数学题 找出斐波那契数列的通项公式,再利用对数的性质就可得到前几位的数 斐波那契通项公 ...

  2. HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  3. hdu 1568 Fibonacci 快速幂

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  4. hdu 1568 Fibonacci 数学公式

    Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = ...

  5. [hdu 1568] Fibonacci数列前4位

    2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2 ...

  6. HDU 1568 Fibonacci(大数前4位)

    转载自:http://blog.csdn.net/thearcticocean/article/details/47615241 分析:x=1234567.求其前四位数: log10(x)=log10 ...

  7. HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)

    HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的 ...

  8. hdu 1568 (log取对数 / Fib数通项公式)

    hdu 1568 (log取对数 / Fib数通项公式) 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]= ...

  9. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

随机推荐

  1. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼( 差分 + 离散化 + 树状数组 )

    假如矩阵范围小一点就可以直接用二维树状数组维护. 这道题,  差分答案, 然后一维排序, 另一维离散化然后树状数组维护就OK了. ----------------------------------- ...

  2. Mysql 批量杀死进程

    正常情况下kill id,即可,但是有时候某一异常连接特别多的时候如此操作会让人抓狂,下面记录下小方法: use information_schema; select concat('kill ',i ...

  3. zoj 2587 Unique Attack 最小割判定

    题目链接 让你判断最小割是否唯一. 判断方法是, 先求一遍最大流, 然后从源点dfs一次, 搜索未饱和边的数目. 从汇点dfs一次, 同样也是搜索未饱和边的数目, 看总和是否等于n. 如果等于n那么唯 ...

  4. [原创]Python批量操作文件,批量合并

    最近几个小伙伴在手动合并一些文本文件,感觉可以用Python批量实现,就有了这段代码 import os import re import sys def printEnter(f1): #每两个文件 ...

  5. python 常用模块及方法

    ******************** PY核心模块方法 ******************** os模块: os.remove()         删除文件 os.unlink()        ...

  6. jQuery.validationEngine前端验证

    引入相关文件: <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.js" type ...

  7. perspective结合transform的3D效果

    http://css-tricks.com/almanac/properties/p/perspective/ 链接中讲了 perspective的两种用法及比较: 1.perspective:100 ...

  8. CSS 常用自定义样式

    目录: 1. 文本单行显示,并对超出部分截断以省略号代替: 2.列布局或栅格布局:比如:左侧固定宽度,右侧占满剩下的宽度: 章节: 1. 文本单行显示,并对超出部分截断以省略号代替:参见以下代码: d ...

  9. Java图形化界面设计——布局管理器之null布局(空布局)

    一般容器都有默认布局方式,但是有时候需要精确指定各个组建的大小和位置,就需要用到空布局. 操作方法: 1)       首先利用setLayout(null)语句将容器的布局设置为null布局(空布局 ...

  10. 杭州电子科技大学Online Judge 之 “确定比赛名次(ID1285)”解题报告

    杭州电子科技大学Online Judge 之 "确定比赛名次(ID1285)"解题报告 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozh ...