codevs 1281 Xn数列 (矩阵乘法)
/*
再来个题练练手
scanf longlong 有bug....... */
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
using namespace std;
ll n,m,x,y,x0,g;
ll f[][],a[][];
ll slow_mul(ll a,ll b,ll c)
{
ll ans=;
a=a%c;b=b%c;
while(b)
{
if(b&)
{
b--;
ans+=a;
ans%=c;
}
a<<=;a%=c;b>>=;
}
return ans;
}
void mul(ll a[][],ll b[][])
{
ll c[][];
memset(c,,sizeof(c));
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++)
c[i][j]=(c[i][j]+slow_mul(a[i][k],b[k][j],m))%m;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
a[i][j]=c[i][j];
}
int main()
{
cin>>m>>x>>y>>x0>>n>>g;
//scanf("%ld%ld%ld%ld%ld%ld",&m,&x,&y,&x0,&n,&g);
f[][]=x0;f[][]=;a[][]=x;a[][]=;a[][]=y;a[][]=;
while(n)
{
if(n&)mul(f,a);
mul(a,a);
n>>=;
}
printf("%ld\n",f[][]%g);
return ;
}
codevs 1281 Xn数列 (矩阵乘法)的更多相关文章
- codevs 1281 Xn数列
题目描述 Description 给你6个数,m, a, c, x0, n, g Xn+1 = ( aXn + c ) mod m,求Xn m, a, c, x0, n, g<=10^18 输入 ...
- CODEVS1281 Xn数列 (矩阵乘法+快速乘)
真是道坑题,数据范围如此大. 首先构造矩阵 [ f[0] , 1] * [ a,0 ] ^n= [ f[n],1 ] [ c,1 ] 注意到m, a, c, x0, n, g<=10^18,所以 ...
- [WikiOI "天梯"1281] Xn数列
题目描述Description 给你6个数,m, a, c, x0, n, g Xn+1 = ( aXn + c ) mod m,求Xn m, a, c, x0, n, g<=10^18 输入描 ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 【wikioi】1281 Xn数列(矩阵乘法)
http://wikioi.com/problem/1281/ 矩阵真是个神奇的东西.. 只要搞出一个矩阵乘法,那么递推式可以完美的用上快速幂,然后使复杂度降到log 真是神奇. 在本题中,应该很快能 ...
- Codevs No.1281 Xn数列
2016-06-01 16:28:25 题目链接: Xn数列 (Codevs No.1281) 题目大意: 给定一种递推式为 Xn=(A*Xn-1+C)%M 的数列,求特定的某一项%G 解法: 矩阵乘 ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- HTML用法小摘录
一.网页地址栏上小图标标签添加写法: <link rel="Shortcut Icon" href="~/Content/ico/glasses.ico" ...
- iptables的设置
一.filter表防火墙(过滤器) iptables -A ( INPUT OUTPUT ) -s 192.1680.1.200 -p ( TCP UDP ICMP ) -i ( eth0 eth1 ...
- bzoj1563: [NOI2009]诗人小G
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- Ruby自学笔记(六)— 循环
循环结构在编程语言中是不可或缺的,所以Ruby中的循环也有其自定义的规则. 而我们关注循环结构,要知道两个因素:1) 循环的条件:2) 循环执行的内容 Ruby有一些方式来实现循环结构体: 1. ti ...
- [BZOJ 1048] [HAOI2007] 分割矩阵 【记忆化搜索】
题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标 ...
- DB2 SQL RR/RS/CS/UR四个级别《转载》
1.RR隔离级别:在此隔离级别下, DB2会锁住所有相关的纪录.在一个SQL语句执行期间,所有执行此语句扫描过的纪录都会被加上相应的锁.具体的锁的类型还是由操作的类型来决定,如果是读取,则加共享锁:如 ...
- SQL Server 全文搜索 配置、查询初体验
原文:SQL Server 全文搜索 配置.查询初体验 一.使用SQL Server全文搜索配置 要使用SQL Server的全文搜索服务,需要进行如下配置. 1.开启全文搜索服务: 2.开启数据库的 ...
- android如何获取默认的桌面程序
[方法1] http://stackoverflow.com/questions/12594192/remove-activity-as-default-launcher/12594332#12594 ...
- bzoj3191
其实这是一个约瑟夫问题的变种首先我们先处理这样一个问题已知n个人,编号0~n-1,每k人干掉一个,问最后留下来的是谁当n,k非常大的时候,模拟是不行的,这时候我们考虑重编号第1次退出的肯定是肯定是编号 ...
- 动态规划(状态压缩):BZOJ 2621 [Usaco2012 Mar]Cows in a Skyscraper
2621: [Usaco2012 Mar]Cows in a Skyscraper Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 303 Sol ...