题面在这里

description

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。

比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

data range

\[n的长度不超过50,答案不超过2^{63}-1.
\]

solution

题目相当于求将\(n\)按位拆开重组后小于\(n\)的数的个数(包含前导0)

考虑数位\(DP\),当由危险态到达安全态的时候,由于后面的数码我们已经知道,且可以任意取,

是不是用组合数学统计一下就可以了?

假设当前考虑第\(i\)位\(a_i\)并且选出了一个数码\(s\)代替这一位,

且已经知道不包括第\(i\)位的后面部分组成数码的个数,存储在\(t_{0...9}\)中,

那么当前这一位的答案就是$$\sum_{s=0}{a_i-1}\frac{(\sum_{k=0}{9}t[k])!}{\prod_{k=0}^{9}t[k]!}$$

如果你按照这种递推式写代码你会由于爆\(long long\)获得\(60\)分的好成绩

所以答案需要转换一下,由于$$\frac{(\sum_{k=0}{9}t[k])!}{\prod_{k=0}{9}t[k]!}=\prod_{k=0}{9}C_{\sum_{k=s}{9}t[k]}^{t[s]}$$

最后把每一位答案相加即可

具体实现的过程中,根本不需要开动态规划数组

code

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#define RG register
#define il inline
using namespace std;
typedef long long ll;
typedef double dd;
typedef vector<int> VI;
const int N=52;
ll n,a[N],t[10],tot,ans,C[N][N];
il ll calc(int x){
RG ll sum=1,cnt=tot-1;
for(RG int i=0;i<=9;i++)
if(t[i]-(i==x))
sum*=C[cnt][(t[i]-(i==x))],cnt-=(t[i]-(i==x));
return sum;
} int main()
{
RG char ch=0;
C[0][0]=1;
for(RG int i=1;i<=50;i++)
for(RG int j=0;j<=50;j++){
C[i][j]=C[i-1][j];
if(j)C[i][j]+=C[i-1][j-1];
}
while(ch>'9'||ch<'1')ch=getchar();
while(ch<='9'&&ch>='0'){a[++n]=ch-48;t[a[n]]++;tot++;ch=getchar();}
for(RG int i=1;i<=n;tot--,t[a[i]]--,i++)
for(RG int k=0;k<a[i];k++)
if(t[k])ans+=calc(k); printf("%lld\n",ans);
return 0;
}

[HAOI2010]计数的更多相关文章

  1. 【BZOJ2425】[HAOI2010]计数(组合数学)

    [BZOJ2425][HAOI2010]计数(组合数学) 题面 BZOJ 洛谷 题解 很容易的一道题目. 统计一下每个数位出现的次数,然后从前往后依次枚举每一位,表示前面都已经卡在了范围内,从这一位开 ...

  2. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  3. BZOJ2425: [HAOI2010]计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 其实能够构成的数就是原数的排列(算前导0),然后组合计数一下就可以了. #include ...

  4. P2518 [HAOI2010]计数

    题目链接 \(Click\) \(Here\) 很好很妙的一个题目. 其实可以生成的数字,一定是原数的一个排列,因为\(0\)被放在前面就可以认为不存在了嘛~.也就是说现在求的就是全排列中所有小于该数 ...

  5. bzoj千题计划178:bzoj2425: [HAOI2010]计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意转化: 给定一个集合S,求S的全排列<给定排列 的排列个数 从最高位开始逐位枚举确定 ...

  6. BZOJ2425:[HAOI2010]计数(数位DP)

    Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...

  7. [HAOI2010]计数(组合数学)(数位DP)

    原题题意也就是给的数的全排列小于原数的个数. 我们可以很容易的想到重复元素的排列个数的公式. 但是我们发现阶乘的话很快就会爆long long啊(如果您想写高精请便) 之后我就尝试质因数分解....但 ...

  8. [HAOI2010]计数 数位DP+组合数

    题面: 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. ...

  9. BZOJ2425:[HAOI2010]计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2425 https://www.luogu.org/problemnew/show/P2518 你有 ...

  10. 洛谷 P2518 [HAOI2010]计数 (组合数)

    题面 luogu 题解 本来想练数位dp的,结果又忍不住写了组合数.. 去掉一个\(0\)可以看作把\(0\)移到前面去 那么题目转化为 \(n\)有多少个排列小于\(n\) 强制某一位比\(n\)的 ...

随机推荐

  1. hibernate连接oracle数据库进行查询

    按主键查询 dao层 public Emp get(Serializable id){ //通过session的get方法根据加载指定对象 return (Emp)HibernateUtil.curr ...

  2. JS学习- ES6 async await使用

    async 函数是什么?一句话,它就是 Generator 函数的语法糖. 使用场景常常会遇到,请求完一个接口,拿完值再去请求另外一个接口,我们之前回调callback函数处理,如果很多的情况下,看起 ...

  3. java递归 斐波那契数列递归与非递归实现

    递归简单来说就是自己调用自己, 递归构造包括两个部分: 1.定义递归头:什么时候需要调用自身方法,如果没有头,将陷入死循环 2.递归体:调用自身方法干什么 递归是自己调用自己的方法,用条件来判断调用什 ...

  4. thinkphp发送邮箱(以thinkphp5作为示例)。

    第一步:设置我们的邮箱客户端授权码 第二步:下载相应的第三方类库(我这里用的PHPemail) 这是phpemailde 第三方类库的文件下载地址:https://github.com/PHPMail ...

  5. PHP+AJAX开发幸运大转盘抽奖

    PHP+AJAX开发幸运大转盘抽奖,通过奖品库存.中奖次数来计算中奖概率 奖品设置 $prizes = array( 0 => array( "id" => 0, // ...

  6. STM32(4)——系统时钟和SysTick

    1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL HSI是高速内部时钟,RC振荡器,频率为8MHz: HSE是高速外部时钟,可接石英/陶瓷谐振器 ...

  7. python内置常用高阶函数(列出了5个常用的)

    原文使用的是python2,现修改为python3,全部都实际输出过,可以运行. 引用自:http://www.cnblogs.com/duyaya/p/8562898.html https://bl ...

  8. 爬虫之爬取斗鱼官网LOL部分主播的状态

    一个爬虫小程序 爬取主播的排名及观看人数 import re import requests import request class Spider(): url = 'https://www.dou ...

  9. 解决Pycharm无法使用已经安装Selenium的问题

    重要:参考资料 当前版本 python版本:2.7 pycharm: 2017 原来本机是已经安装了2.7和selenium,新安装了一个pycharm的ide,于是selenium总是安装报错.At ...

  10. Scrapy之Cookie和代理

    cookie cookie: 获取百度翻译某个词条的结果 一定要对start_requests方法进行重写. 两种解决方案: 1. Request()方法中给method属性赋值成post2. For ...