Luogu 1484 种树
Luogu 1792 算是双倍经验。
我们考虑对于一个点,我们要么选它,要么选它周围的两个点。
所以我们考虑用一个堆来维护,每次从堆顶取出最大值之后我们把它的权值记为:它左边的权值加上它右边的权值减去它自己的权值。即$a_{pos} = a_{l(pos)} + a_{r(pos)} - a_{pos}$。然后把它丢到堆里去。
这样子如果下次取出来这个值就相当于不选原来选过的那个点,而改选它旁边的两个点,而这样选的总的点数也是一样的,这个过程也可以扩展到一个区间,所以这样子可以求出最优解。
对于那些取出来的点的两边的点,我们下次在取出来的时候不应该再计算贡献,所以记一个$vis$。
这个“左边的点”和“右边的点”可以用链表维护。
注意到本题中不一定选满$k$个,所以当取出来的堆顶权值为负的时候直接$break$掉,而在Luogu1792中一定要选满$k$个。
时间复杂度$O(klogn)$。
Code:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll; const int N = 5e5 + ; int n, K, nxt[N], pre[N];
ll a[N];
bool vis[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct Node {
ll val; int pos; Node(ll v = , int p = ) {val = v, pos = p;} friend bool operator < (const Node &x, const Node &y) {
return x.val < y.val;
} };
priority_queue <Node> Q; inline void del(int p) {
nxt[pre[p]] = nxt[p];
pre[nxt[p]] = pre[p];
vis[p] = ;
} int main() {
read(n), read(K);
for(int i = ; i <= n; i++) {
read(a[i]);
nxt[i] = i + , pre[i] = i - ;
Q.push(Node(a[i], i));
} ll ans = 0LL;
for(; K--; ) {
for(; vis[Q.top().pos]; Q.pop());
Node out = Q.top(); Q.pop();
if(out.val < ) break;
int x = pre[out.pos], y = nxt[out.pos];
ans += out.val;
Q.push(Node(a[out.pos] = a[x] + a[y] - out.val, out.pos));
del(x), del(y);
} printf("%lld\n", ans);
return ;
}
Luogu 1484 种树的更多相关文章
- luogu 1484\1792 种树 奇怪的贪心可反悔
1484 种树 此版本是线性的,那么根据链表维护即可: 构建新点,点的左右分别是原整个区间的前驱及后继,再正常维护即可 注意两个版本的维护有所不同 第二个版本的维护直接将左右两点删除 1792 种树2 ...
- luogu P1250 种树
我来总结一下最常用的两种办法 1.贪心 2.差分约束 那么我们先来讲,贪心版<种树> 大家可能知道有一个题和这个类似,那个是钉钉子而这个是种树 我们可以借用钉钉子的思路来想,首先这个是让你 ...
- Luogu P1484 种树
这道题目还是比较简单的 首先题目的意思就让我们很轻易地想到DP 我们设f[i][j]表示前i个坑中种j棵树的最大利益,则有: f[i][j]=max(f[i-1][j],f[i-2][j-1]+a[i ...
- dp题
1.luogu 1484种树 50分思路:dp,但是数据规模过大没法dp选择奇怪贪心 dp方程 到i坑种j树 dp[i][j]=max(dp[i-1][j],dp[i-2][j-1]) 100分思路: ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- Luogu P5564 [Celeste-B]Say Goodbye (多项式、FFT、Burnside引理、组合计数)
题目链接 https://www.luogu.org/problem/P5564 题解 这题最重要的一步是读明白题. 为了方便起见下面设环长可以是\(1\), 最后统计答案时去掉即可. 实际上就相当于 ...
- [luogu]P1133 教主的花园[DP]
[luogu]P1133 教主的花园 ——!x^n+y^n=z^n 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会 ...
- P1250 种树(差分约束 / 贪心)
题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1-N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E,T ...
- 帝国の狂欢(种树)(可撤销DP)
题目描述 马上就要开学了!!! 为了给回家的童鞋们接风洗尘,HZOI帝国的老大决定举办一场狂欢舞会. 然而HZOI帝国头顶上的HZ大帝国十分小气,并不愿意给同学们腾出太多的地方.所以留给同学们开par ...
随机推荐
- 「BZOJ2510」弱题(矩阵乘法,降维)
有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...
- VerilogHDL编译预处理
编译预处理语句 编译预处理是VerilogHDL编译系统的一个组成部分,指编译系统会对一些特殊命令进行预处理,然后将预处理结果和源程序一起在进行通常的编译处理.以”`” (反引号)开始的某些标识符是编 ...
- OpenWrt添加启动脚本
1.在 /etc/init.d 目录下建立文件 vi silabs #!/bin/sh /etc/rc.common # Copyright (C) 2006 OpenWrt.org START=93 ...
- HTML5离线应用
本地缓存与浏览器缓存 本地缓存是为整个web应用程序服务的而网页缓存值服务与单个网页 本地缓存是为你指定的资源进行缓存,而我们不知道网页缓存会春初哪些内容,他是不安全不可靠的 在没有网络的时候还是可以 ...
- LTE-V2X车联网无线通信技术发展
2017年9月7日,国家制造强国建设领导小组车联网产业发展专项委员会第一次全体会议在北京召开.会议要求“要加大关键产品研发攻关力度,完善测试验证.技术评价.质量认证等公共服务平台,促进LTE-V2X车 ...
- [转] pip镜像升级报警 -trust-host问题解决方案
pip升级到7.0以后,在使用http镜像进行包安装及升级的时候往往会有如下提示: Collecting beautifulsoup4The repository located at mirrors ...
- java继承。顾不了
总结:为什么结果显示所有数据都重复输出了呢? package com.sa; //java里的几个难以理解的概念.字节码文件.class文件.源文件 //.class文件指的是.编译后产生的字节码文件 ...
- KVO键值监听
KVO 键值监听:当我想知道一个对象的属性是否发生改变的时候 做出响应,就需要添加监听keypath 和 key的区别keypath会自动寻找子类的属性key只会寻找当前类的属性添加键值监听[pers ...
- 2016.4.6 WinForm显示PDF两种方法
1.最直接的方法,添加webbrowser控件 webb.Url = new Uri(path);可显示pdf控件. 如果需要在打开时跳转到某页,可用在路径后直接加#page=,例如webb.Url ...
- CGContextRef详解
/* CoreGraphics - CGContext.h */ /** Graphics state functions. **/ //为了让开发者在进行坐标变换时无须计算多次坐标变换后的累加结果, ...