Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6415   Accepted: 3098

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 



There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.


建好了图,再SPFA即可!


#include "stdio.h"
#include "string.h"
#include "queue"
using namespace std; #define N 1005
#define INF 0x3fffffff
/**
1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1 如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可 2.如果权值为正,用dijkstra,spfa,bellman都可以,如果为负不能用dijkstra,并且需要判断是否有负环,有的话就不存在
**/ int head[N],idx;
bool mark[N];
int dist[N],countt[N]; struct node
{
int x,y;
int next;
int weight;
}edge[4*20*N]; void Init()
{
idx = 0;
memset(head,-1,sizeof(head));
} void swap(int &a,int &b)
{
int k = a;
a = b;
b = k;
} void Add(int x,int y,int k)
{
edge[idx].x = x;
edge[idx].y = y;
edge[idx].weight = k;
edge[idx].next = head[x];
head[x] = idx++;
} bool SPFA(int start,int end)
{
int i,x,y;
memset(countt,0,sizeof(countt)); //统计每一个点加入队列的次数,判断是否有负环!
memset(mark,false,sizeof(mark));
for(i=start; i<=end; ++i) dist[i] = INF; queue<int> q;
q.push(start);
countt[start]++;
dist[start] = 0; mark[start] = true;
while(!q.empty())
{
x = q.front();
q.pop();
for(i=head[x]; i!=-1; i=edge[i].next)
{
y = edge[i].y;
if(dist[y]>dist[x]+edge[i].weight)
{
dist[y] = dist[x]+edge[i].weight;
if(!mark[y])
{
mark[y] = true;
q.push(y);
countt[y]++;
if(countt[y]>end) return false;
}
}
}
mark[x] = false;
}
return true;
} int main() /**求最大值,不等式化为x-y<=k的形式**/
{
int n;
int x,y,k;
int ML,MD;
while(scanf("%d %d %d",&n,&ML,&MD)!=EOF)
{
Init(); //初始化!
while(ML--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(x,y,k); /**y-x<=k**/
}
while(MD--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(y,x,-k); /**y-x>=k => x-y<=-k**/
}
bool flag = SPFA(1,n);
if(!flag) printf("-1\n");
else if(dist[n]==INF) printf("-2\n");
else
printf("%d\n",dist[n]);
}
return 0;
}


poj 3169 Layout 差分约束模板题的更多相关文章

  1. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  2. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  5. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  6. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  7. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  8. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  9. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

随机推荐

  1. Node.js爬虫数据抓取 -- 问题总结

    一  返回的信息提示  Something went wrong  request模块请求出现未知错误 其中,所用代码如下(无User-Agent部分) 问题多次派查无果,包括: 1:postman请 ...

  2. Hyperion Business Modeling for Microsoft Windows (32-bit)

    介质包搜索 常见问题    说明   复查 许可证列表 以确定需要下载的产品程序包. 请选择产品程序包和平台,然后单击“查找”. 如果只有一项结果,则可以看到下载页.如果有多个结果,请选择一个,然后单 ...

  3. 【C#进阶系列】08 方法

    实例构造与引用类型 之前的章节其实已经写过了引用类型的构造过程: 首先当然是,在堆中,为引用类型的实例对象分配内存,然后初始化对象的附加字段(即类型对象指针和同步块索引). 这个时候为对象分配的内存都 ...

  4. SqlServer一张表数据导入另一张表,收藏使用,工作中更新数据错误很有用

    sql一张表数据导入另一张表   1.如果2张表的字段一致,并且希望插入全部数据,可以用这种方法:   INSERT INTO 目标表 SELECT * FROM 来源表;   2.比如要将 arti ...

  5. OAuth2.0 基础概述

    web:http://oauth.net/2/ rfc:http://tools.ietf.org/html/rfc6749 doc:http://oauth.net/documentation/ c ...

  6. Discuz的缓存体系

    参考文档:<http://dev.discuz.org/wiki/index.php?title=缓存机制> Discuz中涉及数据缓存的地方有: 1. session Dz的sessio ...

  7. jquery 全选 全不选 反选

    1.概述 在项目中经常遇到列表中对复选框进行勾选操作,全选...反选.. 2. example <html> <body> <form id="test-for ...

  8. Python基础(9)--正则表达式

    正则表达式是一个很有用的工具,可处理复杂的字符匹配和替换工作.在Python中内置了一个re模块以支持正则表达式. 正则表达式有两种基本的操作,分别是匹配和替换. 匹配就是在一个文本字符串中搜索匹配一 ...

  9. IOS MenuController初步了解

    IOS MenuController初步了解 默认情况下有以下控件已经支持MenuController. UITextField UITextView UIWebView 让其他控件也支持MenuCo ...

  10. C语言-08-预处理器

    C预处理器,C Preprocessor简称CPP.C预处理器不是编译器的一部分,它是一个单独的文本替换工具,指示编译器在实际编译之前需要完成的工作. 常用的预处理器指令 #include 包含头文件 ...