Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6415   Accepted: 3098

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 



There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.


建好了图,再SPFA即可!


#include "stdio.h"
#include "string.h"
#include "queue"
using namespace std; #define N 1005
#define INF 0x3fffffff
/**
1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1 如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可 2.如果权值为正,用dijkstra,spfa,bellman都可以,如果为负不能用dijkstra,并且需要判断是否有负环,有的话就不存在
**/ int head[N],idx;
bool mark[N];
int dist[N],countt[N]; struct node
{
int x,y;
int next;
int weight;
}edge[4*20*N]; void Init()
{
idx = 0;
memset(head,-1,sizeof(head));
} void swap(int &a,int &b)
{
int k = a;
a = b;
b = k;
} void Add(int x,int y,int k)
{
edge[idx].x = x;
edge[idx].y = y;
edge[idx].weight = k;
edge[idx].next = head[x];
head[x] = idx++;
} bool SPFA(int start,int end)
{
int i,x,y;
memset(countt,0,sizeof(countt)); //统计每一个点加入队列的次数,判断是否有负环!
memset(mark,false,sizeof(mark));
for(i=start; i<=end; ++i) dist[i] = INF; queue<int> q;
q.push(start);
countt[start]++;
dist[start] = 0; mark[start] = true;
while(!q.empty())
{
x = q.front();
q.pop();
for(i=head[x]; i!=-1; i=edge[i].next)
{
y = edge[i].y;
if(dist[y]>dist[x]+edge[i].weight)
{
dist[y] = dist[x]+edge[i].weight;
if(!mark[y])
{
mark[y] = true;
q.push(y);
countt[y]++;
if(countt[y]>end) return false;
}
}
}
mark[x] = false;
}
return true;
} int main() /**求最大值,不等式化为x-y<=k的形式**/
{
int n;
int x,y,k;
int ML,MD;
while(scanf("%d %d %d",&n,&ML,&MD)!=EOF)
{
Init(); //初始化!
while(ML--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(x,y,k); /**y-x<=k**/
}
while(MD--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(y,x,-k); /**y-x>=k => x-y<=-k**/
}
bool flag = SPFA(1,n);
if(!flag) printf("-1\n");
else if(dist[n]==INF) printf("-2\n");
else
printf("%d\n",dist[n]);
}
return 0;
}


poj 3169 Layout 差分约束模板题的更多相关文章

  1. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  2. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  5. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  6. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  7. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  8. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  9. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

随机推荐

  1. attachEvent和addEventListener区别

    一般来说,可以直接封装成这种形式: var addEvent = function(element,type,handler){ if(element.addEventListener){ //DOM ...

  2. ADO.NET ExcuteReader复习

    private void Button_Click(object sender, RoutedEventArgs e) { //ADO.NET 连接方式查询数据库 ExcuteReader执行查询 / ...

  3. 【循序渐进学Python】6.Python中的函数

    1. 创建函数 一个函数代表一个行为并且返回一个结果(包括None),在Python中使用def关键字来定义一个函数,如下: def hello(name): print 'hello,' + nam ...

  4. Import-Module ServerManager Import-Module : 未能加载指定的模块“ServerManager”,因为在任何模块目录中都没有找到有效模块文件...(通过Setup Factory调用PowerShell的脚本)

    操作系统: Windows server 2008 R2(64位) C:\Windows\System32\WindowsPowerShell\v1.0\Modules 下有ServerManager ...

  5. php多版本管理phpenv

    曾经有试过phpbrew的童鞋应该知道有多复杂 虽然这个好久没更新了,还是可以用的-- github:phpenv/phpenv 它的原理就是处理PATH变量,将你要求的php版本的路径加到PATH的 ...

  6. Verilog学习笔记设计和验证篇(一)...............总线和流水线

    总线 总线是运算部件之间数据流通的公共通道.在硬线逻辑构成的运算电路中只要电路的规模允许可以比较自由的确定总线的位宽,从而大大的提高数据流通的速度.各个运算部件和数据寄存器组可以通过带有控制端的三态门 ...

  7. restful架构的理解

    资源的表现层状态转化. 简单的理解即:     1 URI对应一种"资源".     2 客户端与服务端传输资源的某种"表现层".     3 客户端通过HTT ...

  8. Jquey Form 异步提交文件参数并且在http 信息头header中加上一定参数

    1.下载jQuery.Form 包 官网下载:http://jquery.malsup.com/form/#download 2.模拟代码: <!DOCTYPE html> <htm ...

  9. ABAP Performance Examples

    *modifying a set of lines directly(批量修改内表数据) *使用"LOOP ... ASSIGNING ..."可以直接修改内表中的数据,而不需要先 ...

  10. vi编辑器常用配置

    在终端下使用vim进行编辑时,默认情况下,编辑的界面上是没有显示行号.语法高亮度显示.智能缩进等功能的.为了更好的在vim下进行工作,需要手动设置一个配置文件:.vimrc. 在启动vim时,当前用户 ...