poj 3169 Layout 差分约束模板题
Layout
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 6415 | Accepted: 3098 |
Description
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
#include "stdio.h"
#include "string.h"
#include "queue"
using namespace std; #define N 1005
#define INF 0x3fffffff
/**
1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1 如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可 2.如果权值为正,用dijkstra,spfa,bellman都可以,如果为负不能用dijkstra,并且需要判断是否有负环,有的话就不存在
**/ int head[N],idx;
bool mark[N];
int dist[N],countt[N]; struct node
{
int x,y;
int next;
int weight;
}edge[4*20*N]; void Init()
{
idx = 0;
memset(head,-1,sizeof(head));
} void swap(int &a,int &b)
{
int k = a;
a = b;
b = k;
} void Add(int x,int y,int k)
{
edge[idx].x = x;
edge[idx].y = y;
edge[idx].weight = k;
edge[idx].next = head[x];
head[x] = idx++;
} bool SPFA(int start,int end)
{
int i,x,y;
memset(countt,0,sizeof(countt)); //统计每一个点加入队列的次数,判断是否有负环!
memset(mark,false,sizeof(mark));
for(i=start; i<=end; ++i) dist[i] = INF; queue<int> q;
q.push(start);
countt[start]++;
dist[start] = 0; mark[start] = true;
while(!q.empty())
{
x = q.front();
q.pop();
for(i=head[x]; i!=-1; i=edge[i].next)
{
y = edge[i].y;
if(dist[y]>dist[x]+edge[i].weight)
{
dist[y] = dist[x]+edge[i].weight;
if(!mark[y])
{
mark[y] = true;
q.push(y);
countt[y]++;
if(countt[y]>end) return false;
}
}
}
mark[x] = false;
}
return true;
} int main() /**求最大值,不等式化为x-y<=k的形式**/
{
int n;
int x,y,k;
int ML,MD;
while(scanf("%d %d %d",&n,&ML,&MD)!=EOF)
{
Init(); //初始化!
while(ML--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(x,y,k); /**y-x<=k**/
}
while(MD--)
{
scanf("%d %d %d",&x,&y,&k);
if(x>y) swap(x,y);
Add(y,x,-k); /**y-x>=k => x-y<=-k**/
}
bool flag = SPFA(1,n);
if(!flag) printf("-1\n");
else if(dist[n]==INF) printf("-2\n");
else
printf("%d\n",dist[n]);
}
return 0;
}
poj 3169 Layout 差分约束模板题的更多相关文章
- POJ 3169 Layout (差分约束)
题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- ShortestPath:Layout(POJ 3169)(差分约束的应用)
布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...
- POJ 1364 King --差分约束第一题
题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...
- poj 1201 Intervals——差分约束裸题
题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...
- poj 3169&hdu3592(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9687 Accepted: 4647 Descriptio ...
- Bellman-Ford算法:POJ No.3169 Layout 差分约束
#define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...
随机推荐
- 重构第14天 分离职责(Break Responsibilities)
理解:面向对象的五大特征: SOLID,其中S就是职责单一原则.分离职责指当一个类有许多职责时,将部分职责分离到独立的类中,这样也符合面向对象的五大特征之一的单一职责原则,同时也可以使代码的结构更加清 ...
- 利用代码生成工具Database2Sharp设计数据编辑界面
在Winform程序开发中,界面部分的开发工作量一般是比较大的,特别是表的字段数据比较多的情况下,数据编辑界面所需要的繁琐设计和后台逻辑处理工作量更是直线上升,而且稍不注意,可能很多处理有重复或者错误 ...
- Java集合Iterator迭代器的实现
一.迭代器概述 1.什么是迭代器? 在Java中,有很多的数据容器,对于这些的操作有很多的共性.Java采用了迭代器来为各种容器提供了公共的操作接口.这样使得对容器的遍历操作与其具体的底层实现相隔离, ...
- Python入门笔记(25):Python面向对象(2)
一.类 类就是一个数据结构,封装了数据和操作. 类的声明与函数的声明十分类似: class newClass(object): """class documentatio ...
- HTTP请求中的Body构建——.NET客户端调用JAVA服务进行文件上传
PS:今日的第二篇,当日事还要当日毕:) http的POST请求发送的内容在Body中,因此有时候会有我们自己构建body的情况. JAVA使用http—post上传file时,spring框架中 ...
- 重新想象 Windows 8.1 Store Apps (85) - 警报通知(闹钟), Tile 的新特性
[源码下载] 重新想象 Windows 8.1 Store Apps (85) - 警报通知(闹钟), Tile 的新特性 作者:webabcd 介绍重新想象 Windows 8.1 Store Ap ...
- C# ICSharpCode.SharpZipLib.dll文件压缩和解压功能类整理,上传文件或下载文件很常用
工作中我们很多时候需要进行对文件进行压缩,比较通用的压缩的dll就是ICSharpCode.SharpZipLib.dll,废话不多了,网上也有很多的资料,我将其最常用的两个函数整理了一下,提供了一个 ...
- CRC16校验码生成
/// <summary> /// 计算CRC-16 /// </summary> /// <param name="data"></pa ...
- dstat 备忘
http://dag.wiee.rs/home-made/dstat/#download https://github.com/dagwieers/dstat http://lhflinux.blog ...
- 【NOIP训练】【规律+数论】欧拉函数的应用
Problem 1 [题目大意] 给出 多组数据 ,给出 求出 . 题解 证明: 除了 以为均为偶数, 所以互质的个数成对. 由 得 . 所以对于每对的和为 , 共有 对 . 则 Problem ...